

Flintshire - Strategic Flood Consequence Assessment

Draft Report

July 2020

www.jbaconsulting.com

Flintshire County Council Ty Dewi Sant St Davids Park Ewloe Flintshire CH5 3FF

JBA project manager

Mike Williamson Mersey Bank House Barbauld Street Warrington Cheshire WA1 1WA

Revision history

Revision Ref/Date	Amendments	Issued to
Draft V1.0 / April 2020		Andy Roberts
Draft V2.0 / July 2020	Council review	Andy Roberts

Contract

This report describes work commissioned by Andy Roberts, on behalf of Flintshire County Council, by an email dated 11 March 2020. Flintshire County Council's representative for the contract was Andy Roberts. Hannah Bishop, Jack Pordham and Mike Williamson of JBA Consulting carried out this work.

Prepared by	Hannah Bishop BSc (Hons)
	Technical Assistant
	Jack Pordham BSc MA
	Analyst
Reviewed by	Mike Williamson BSc MSc CGeog FRGS EADA
	Principal Flood Rick Analyst

Purpose

This document has been prepared as a Draft Report for Flintshire County Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to the client.

Acknowledgements

JBA would like to thank representatives of Flintshire County Council, Natural Resources Wales and Welsh Water for information provided to inform this assessment.

Copyright

© Jeremy Benn Associates Limited 2020.

Carbon footprint

A printed copy of the main text in this document will result in a carbon footprint of 355g if 100% post-consumer recycled paper is used and 451g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

Contents

1	Introduction	1
1.1	Commission	1
1.2	SFCA requirements	2
1.3	SFCA future proofing	5
2	Study area	6
2.1	River Dee	7
3	The planning framework and flood risk policy	9
3.1	Introduction	9
3.2	Legislation	10
3.3	Planning policy	16
3.4	Flood Risk Management Policy	24
3.5	Roles and responsibilities	28
4	Understanding Flood Risk	31
4.1	Sources of flooding	31
4.2	Likelihood and consequence	32
4.3	Risk	33
4.4	Fluvial and tidal flooding	34
4.5	Surface water flooding	35
4.6	Canal and reservoir flood risk (residual risk)	37
4.7	Flood risk datasets available	40
5	Historic Flooding in Flintshire	41
5.1	NRW Historic Flood Map	41
5.2	Historic tidal and fluvial flooding	41
5.3	Historic surface water flooding	42
6	Flood Risk Management and Alleviation	43
6.1	Catchment Based Approach (CaBA)	43
6.2	Natural Flood Management and Working with Natural Processes – what is it?	43
6.3	Green Infrastructure assessments	45
6.4	NRW flood risk management assets	46
6.5	LLFA flood risk management assets	47
6.6	Water company assets	47
6.7	NRW Flood Risk Management Activities and Flood and Coastal Erosion Risk	
_	ement Research and Development	47
7	Development and flood risk	49
7.1	Introduction	49
7.2	Screening of potential development sites	49
7.3	Residual risk	56
7.4	Summary of justification and acceptability testing outcomes	59
7.5	Safeguarded land for flood storage	60
7.6	Accounting for Climate Change	61
8	Emergency Planning	72
8.1	Civil Contingencies Act	72
8.2	Flood warning and evacuation plans	74
8.3	Flood awareness	76
9	Conclusions and Recommendations	77
9.1	Conclusions	77
9.2	Recommendations for further work	77

Appendices

Error! Reference source not found. **Detailed interactive GeoPDF maps**

Error! Reference source not found. **Development site assessment spreadsheet for fluvial**/ tidal and surface water risk

 ${\bf Error!} \ {\bf Reference} \ {\bf source} \ {\bf not} \ {\bf found.} \ {\bf Development} \ {\bf site} \ {\bf assessment} \ {\bf spreadsheet} \ {\bf for} \ {\bf breach} \ {\bf locations}$

D Flintshire breaches method statement

List of figures

Figure 2-1: Study area	6
Figure 2-2: River Basin Districts	7
Figure 3-1: Key documents and strategic planning links with flood risk	9
Figure 3-2: EU Floods Directive	10
Figure 3-3: Flow chart of the TAN 15 procedure for assessing acceptability of develop	oment in
relation to flood risk	19
Figure 3-4: FCC strategic objectives (extract from Flintshire LFRMS document)	25
Figure 3-5: SMP2 policies for managing the shoreline (extracted from North West En	gland and
North Wales SMP2 report)	26
Figure 4-1: Flooding from all sources	32
Figure 4-2: Source-Pathway-Receptor Model	32
Figure 5-1: DCWW flood incident register	42
Figure 6-1: NRW's conceptual model of WwNP	44
Figure 6-2: EA flood defence condition assessment grades	46
Figure 7-1: SuDS Management Train Principle	69

List of tables

2.51 0. 14.5105	
Table 3-1: Key LLFA responsibilities under the FWMA	15
Table 3-2: Flood risk zones of the DAM as defined by TAN 15	18
Table 3-3: Development categories from TAN 15	18
Table 4-1: Groundwater flood hazard classification of JBA groundwater map	37
Table 4-2: Canal flooding mechanisms	38
Table 4-3: Flood source and key datasets	40
Table 7-1: Proposed site uses and flood risk vulnerability	49
Table 7-2: Number of potential development sites at risk from fluvial / tidal flooding	50
Table 7-3: Number of potential development sites at risk from surface water flooding	50
Table 7-4: Number of sites per strategic recommendation	51
Table 7-5: Sites requiring further evidencing based on significant fluvial / tidal flood risk	54
Table 7-6: Sites wholly in Flood Zone 1 requiring further evidencing based on significant	
surface water risk	54
Table 7-7 Summary of communities at residual risk of defence breaches (present day)	57
Table 7-8: LDF sites at residual tidal flood risk (present day 0.1% AEP)	58
Table 7-9: Percentage of site coverage by blockage flood extents	59
Table 7-10 Average flood depths to sites	59
Table 7-11 Maximum flood depths to sites	59
Table 7-12 Peak flow increases for climate change in Dee RBD	62
Table 7-13 Cumulative SLR for a 75-year lifetime development (base year 2020)	62
Table 7-14 Cumulative SLR for a 100 year lifetime development (base year 2020)	62
Table 7-15 Summary of communities potentially at residual risk from defence breaches i	
future	63
Table 7-16 LDF sites at residual tidal flood risk in the future (0.1% AEP CC2120)	64
Table 8-1: Flood warning and evacuation plans	75
Table 9-1: Recommended further work for FCC	78

1 Introduction

Planning in Wales is based on a Plan led system whereby development plans are prepared by each LPA in order to provide for the economic, social and environmental needs of the County. Development plans contain a framework of policies and proposals which seek to regulate and control the development and use of land, and to provide the basis for consistent and transparent decision making on individual planning applications. A Strategic Flood Consequence Assessment (SFCA) is designed to inform this decision-making process.

Following the adoption of the Flintshire Unitary Development Plan (UDP), Flintshire County Council (FCC) is embarking on the preparation of a Local Development Plan (LDP) for the County. The LDP will focus on delivering sustainable development in the County up to 2030. The LDP differs from the UDP in terms of how it is prepared. A key feature of the LDP process is the opportunity for engagement with a variety of stakeholders from early on in the process, in order that they can have the opportunity to influence the Plan as it progresses.

1.1 Commission

In 2017, FCC commissioned JBA Consulting to undertake a SFCA, completed in July 2018, to inform the Deposit Plan stage of the LDP. In March 2020, JBA was commissioned to update the Deposit Plan SFCA in response to representations from NRW to inform the forthcoming Examination of the LDP.

This report and accompanying appendices are updated versions of the Deposit Plan SFCA. In consultation with Natural Resources Wales (NRW), the following key updates were required to bring the SFCA in line with the next stage of the LDP:

- Updated defence breach scenario modelling for the Tidal Dee using NRW's updated model from April 2020 – see Section Error! Reference source not found, and Appendix D.
- Flood risk screening of 11 LDP employment allocations (Policy PE1), 30 Principle Employment Area sites (Policy PE2) and rescreening of Deposit Plan sites that fall within the range of the Tidal Dee modelled breach scenario outputs. See Sections 7.2 and 7.3.1,
- Assessment of NRW modelled culvert blockage scenario outputs for sites PE1.1 and PE1.2 at Hawarden – see Section 7.3.2,
- Updates to the SFCA site assessment spreadsheets (for flood zones, DAM and breaches) – see Appendix B and C,
- 5. Updates to the interactive GeoPDF flood risk maps with new sites and breach information see Appendix A,
- 6. Specific updates to SFCA main report as requested by NRW through the Deposit Plan consultation process, namely:
 - a. Updates to the Reservoir Regulations see Section 4.6.2,
 - Information from NRW's "Maps for Natural Flood Management" and supporting technical guidance – see Section 6.2,
 - c. Updates to reflect statutory changes in the management of surface water runoff from new development in Wales, with the introduction of National Standards and the creation of Sustainable Drainage Approving Bodies (SABS) – see Sections 3.3.3 and 7.6.5.

1.2 SFCA requirements

The SFCA is carried out in accordance with Welsh Government's development planning guidance, namely:

- · Planning Policy Wales (PPW),
- · Technical Advice Note 15: Development and Flood Risk (TAN 15), and
- Welsh Government (2016): FCA Climate Change allowances which, in part, discuss the necessity to take account of climate change for a 0.1% AEP fluvial or tidal flood event. This is discussed in Section 7.

Together with the additional requirements stated above to update the SFCA for the next stage of the LDP, the original requirements of the SFCA for the Deposit Plan are stated below. These requirements were stated in the Deposit Plan SFCA Project Brief document which used a staged approach:

Stage 1

- Using the most up-to-date, available data to identify and assess all potential sources and mechanisms of flooding on a strategic scale and factors affecting them e.g. existing defences, assets, etc. An assessment of the potential impacts (both positive and negative) that future new development could contribute to that risk.
- To determine the potential broad effects of any increased surface water runoff from proposed development, taking into account the requirements of para.8.5 of TAN 15 and, where applicable (in consultation with the LLFA, NRW, and Dwr Cymru – Welsh Water), consider areas where the receiving system is known to be inadequate.
- An assessment and mapping of all sources of current flood risk:
 - The fluvial and tidal flood risk assessment should be based on the latest version of NRW's Development Advice Map (DAM). Note: the DAM has not changed in Flintshire since the Deposit Plan SFCA was published in 2018. TAN 15 sets out a clear policy aim to identify land required for current and future flood management that should be safeguarded. Therefore, this SFCA should identify potential green space infrastructure as fluvial undeveloped rural areas within the 1 in 100-year flood event outline. This can be used to set future land use and flood management policies, to protect those, open spaces in the floodplain, where development should be avoided to reduce overall flood risk.
 - Surface water:
 - Runoff (pluvial flooding) interactions between surface water flooding and identified areas for development need to be based on the most recent version of NRW's Surface Water Flood Maps (Risk of Flooding from Surface Water) as well the outcomes to any strategic surface water assessments previously undertaken. This appraisal should demonstrate the likely level of surface water flood risk to future development sites and will also influence flood risk management recommendations.
 - Sewer flooding assessment of historic flood incidents and artificial drainage areas available from Welsh Water (DCWW).
 - Critical Drainage Areas (CDA) / Areas of Critical Drainage (ACDP)

 information used during the assessment of surface water flooding, in combination with historical records, should be used to identify any possible CDAs / ACDPs. Such identification will provide a good indication of areas, if developed, that may significantly

increase flood risk downstream or to the wider community by the generation of increased surface water runoff. Identification of such critical areas should help to inform FCC on the need for future drainage assessments or surface water management plans.

- Groundwater susceptibility of areas to groundwater flooding should be appraised based on available information and historical accounts of flooding and again this will be informed by FCC and NRW records of groundwater flooding.
- Assessment of risk from artificial sources see Stage 2.
- Assessment of current flood risk management (FRM) measures all information on FRM measures that are now in place throughout the county should be noted and mapped, including:
 - NRW assets such as raised defences and embankments
 - NRW Flood Warning Areas (FWA)
 - Council owned assets
 - Critical structures such as bridges, defences and weirs which may affect local hydraulics and flood risk.
- Impacts of climate change To enable FCC to take extreme events, including consideration of climate change (in accordance with Welsh Government Letter: CL-03-16 Climate change allowances for Planning purposes from December 2016). The vulnerability and adaptability of communities to the impacts of climate change should be highlighted as this should influence future development and how the Council manages its own estate.
- Assessment of risk to proposed development:
 - GIS analysis to assess flood risk to proposed development sites, calculating area and percentage at risk from fluvial, tidal and surface water flooding. The results of this analysis to be included within a calculational spreadsheet to enable simple application of the Sequential Test by the Council. This analysis should be extended to include the impacts of climate change at these sites where data is available.
 - The spreadsheet should identify those sites at high risk, which should be avoided, those which may be available for substitution and those, which are located in lower risk areas and are seen as suitable for development. The spreadsheet should also be used to identify whether site boundaries should be adjusted to reduce flood risk and identify where the Justification and Acceptability Test would need to be satisfied. Within the SFCA report, flood risk to high-risk development sites or communities (depending on the number and proximity of sites) should be summarised thus aiding the application of the Justification Test.
 - This process should also guide the scope of Stage 2, by identifying those sites, areas or communities which are at high risk but are known within FCC to provide significant regeneration potential and are required to pass the Exception Test. The results will also offer a first look at those sites, which could offer potential compensatory storage. Effective review and assessment will be required at this stage by both FCC and NRW.

Stage 2

As discussed, this stage has been updated using the up to date Tidal Dee model.

- Stage 2 of the SFCA should build on the information, analysis and findings of Stage 1, with a more focussed assessment of flood risk, particularly in the Dee Basin area in the form of a series of breach assessments at agreed locations in accordance with standard NRW breach assessment criteria.
- Stage 2 should primarily be focused on developing the detailed understanding
 of flood hazard in high risk areas, which coincide with areas with development
 pressures. Particular focus will be given to areas within the Dee Basin area.
 This detailed information should support further application of the Sequential
 Test, identify those sites or communities which are likely to pass the Exception
 Test if required.
- Flood risks such as depths, velocities and hazards will be required in order for FCC to assess the sustainability of these areas, appropriate mitigation techniques for master planning and site layouts.
- Breach and overtopping modelling for targeted locations:
 - Flood outlines;
 - Maximum depths of flooding;
 - Rate of rise / speed of inundation;
 - Maximum velocity of flood waters;
 - Flood hazard
 - For the following scenarios:
 - 0.5% tidal present day
 - 0.5% tidal with 100 years climate change allowance
 - 0.1% tidal present day
 - 0.1% tidal with 100 years climate change allowance
- · Assessment of high risk sites:
 - The information and guidance provided within the SFCA should be used by FCC to inform development and flood risk and to enable the LPA to apply the tests in sections 6 and 7 of TAN 15 to key sites.
 - Surface water risk should also be reviewed, and recommendations made as per Section 8 and Appendix 4 of TAN 15 concerning surface water management and Sustainable Drainage Systems (SuDS).
 - At each high risk site, an assessment should be made of the current and likely future flood risk from fluvial, coastal and surface water sources, where applicable. These assessments should provide the key information required in order to answer the questions posed in TAN 15 regarding the suitability of land for development. This specifically entails whether key sites fall within the 0.1% flood outline (Zone C) though should also assess the tolerable criteria for risks to developments associated with flood depth, rate of rise of flood waters, speed of flood water inundation and flow velocity.

It is important to highlight that this SFCA is strategic in nature and makes use of the most current available information. This SFCA should be used as a starting point for planners, developers and the public to initially consider development and flood risk and whether more detailed, site specific assessments of flood risk, such a Flood Consequence Assessment (FCA), are required. It is also worth noting that the presence

of flood zones in an area, be it fluvial, tidal or surface water, does not mean that development simply cannot happen. Sites located within areas of lower risk should be considered in preference to areas at higher risk as part of the development planning process and a more detailed assessment of flood risk may be required to ensure that risks can be effectively managed.

1.3 SFCA future proofing

As discussed, this SFCA has been developed using the most up-to-date information and data available at the time of writing. The SFCA has been future proofed as much as possible though the reader should always confirm with the source organisation (FCC) that the latest information is being used when decisions concerning development and flood risk are being made. Welsh Government policy documents Planning Policy Wales and Technical Advice Note 15: Development and Flood Risk are referred to throughout this SFCA as these are the current primary documents available at the time of the finalisation of this SFCA. Also, be aware that this is a live document and can be updated by FCC as and when new information becomes available.

NRW would usually recommend updating an SFCA every three to four years, unless there is a significant flood affecting the area or a change in policy, in which case an immediate review should be undertaken. Where possible, the SFCA should be kept as a 'live' entity and continually updated when new information becomes available.

As discussed, this version of the SFCA is the latest update following the consultation on the Deposit Plan of the LDP.

2 Study area

FCC is located in North Wales; the county covers an area of approximately 438 square kilometres and had a population of around 155,000 in 2017.

Flintshire is bound in the north by the Dee Estuary, and by Cheshire West and Chester unitary authority in the east, Wrexham to the south and Denbighshire to the west. The coast along the Dee Estuary is heavily industrialised with most northern coastline mainly developed for tourism. The Clwydian mountains occupy much of the west of the county with the highest point being Moel Famau at 554 metres. The main towns include Buckley, Connah's Quay, Flint, Hawarden, Holywell, Mold, Queensferry and Shotton. The main rivers in Flintshire are the River Dee, including the Dee Estuary and the River Alyn.

Flintshire has some significant areas which are at risk from tidal and fluvial flooding, which correspond with highly populated and developed area where there is also significant employment land and infrastructure, such as Deeside and the Dee Basin, and the coast from Deeside to the county boundary with Denbighshire in the north, and settlements along the catchment of the River Alyn including Mold. There are several main settlements at fluvial and / or tidal flood risk, including Talacre, Mostyn, Flint, Connah's Quay, Shotton, Mold and a number of smaller settlements.

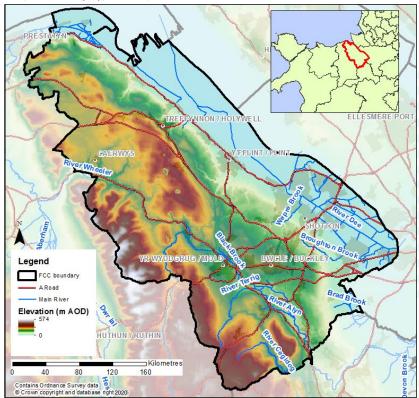


Figure 2-1: Study area

FCC is mostly within the Dee River Basin District (RBD) though the north western area of the county, which is largely rural with a number of small settlements, is within the Western Wales RBD.

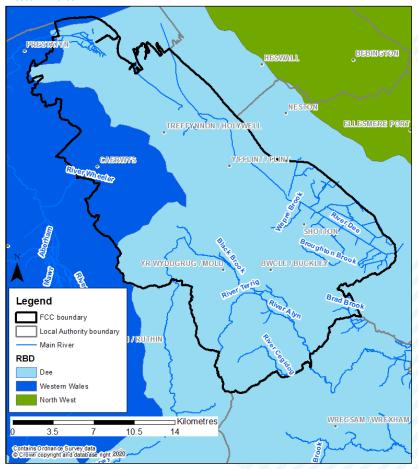


Figure 2-2: River Basin Districts

2.1 River Dee

The Dee RBD covers an area of 2,200 square kilometres, mainly in Wales but in the lower reaches the Dee often runs along the border with England. Its source is in the mountains and lakes of the Snowdonia National Park where it runs to the internationally significant intertidal and wading bird habitat of the Dee Estuary Reservoirs in the upper part of the catchment which store water and regulate flows in the Dee. The reservoirs sustain abstractions for public and industrial water supply and modify flood response in the river, reducing the frequency of flooding in the Dee between Bala and Chester.

The varying landscape of the catchment results in different flooding responses in different areas. In the west, the steep slopes give rise to more rapid runoff and faster flooding responses; in the east, the land is more gently sloping therefore resulting in slower runoff rates. Arable farming dominates on the east of the Dee Estuary, and around Deeside and Sealand.

Following rainfall events in upstream areas, water levels in the Dee can take a few days to peak in the downstream reaches. During very high tides, tide locking can occur where the level of the incoming high tide prevents fluvial water flowing out to sea. This tidal impact affects the river beyond Chester as far upstream as Farndon.

Frequent flooding in the lower Dee between Bangor-on-Dee and Chester (to the south of Chester) has resulted in very little urban development. The area is extensively used for agriculture, particularly intensive dairy farming on the fertile land in and around Wrexham and on the Cheshire Plain.

Approximately 6% of the catchment is urban with Wrexham, Chester and Deeside being the main towns, where over 60% of the population lives. The tidal section of the River Dee downstream of Chester was straightened in the late 1700s for navigational purposes, enabling urban development on both sides of the river. Changes in land use within the catchment have led to the modification of some rivers and pollution from agricultural runoff and industry.

Parts of the Dee catchment are underlain by a Permo-Triassic Sandstone aquifer. This aquifer is used to support agricultural, industrial and public water supply abstractions, whilst also contributing to baseflows in the lower Dee and some of the tributaries. The Dee is an important source of drinking water for nearly three million people, in Wales and North West England. Risks from pollution have led to it becoming one of the most protected rivers in Europe. In 1999, the lower part of the Dee was designated as the UK's first, and to date only, Water Protection Zone.

3 The planning framework and flood risk policy

3.1 Introduction

The main purpose of this section of the SFCA is to provide an overview of the key planning and flood risk policy documents that have shaped the current planning framework. This section also provides an overview and context of the LLFA's and LPA's responsibilities and duties in respect to managing local flood risk including but not exclusive to the delivery of the requirements of the Flood Risk Regulations (FRR) 2009 and the Flood and Water Management Act (FWMA) 2010.

Figure 3-1 illustrates the links between legislation, national policy, statutory documents and assessment of flood risk. The figure shows that whilst the key pieces of legislation and policy are separate, they are closely related, and their implementation should aim to provide a comprehensive and planned approach to asset record keeping and improving flood risk management within communities.

It is intended that the non-statutory Surface Water Management Plans (SWMPs) and SFCAs can provide much of the base data required to support the delivery of the LLFA's statutory flood risk management tasks as well supporting local authorities in developing capacity, effective working arrangements and informing Local Flood Risk Management Strategies (LFRMS) and LDPs, which in turn help deliver flood risk management infrastructure and sustainable new development at a local level. This SFRA should be used to support the LPA's LDP and to help inform planning decisions.

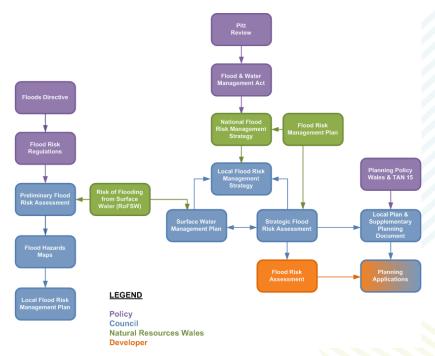


Figure 3-1: Key documents and strategic planning links with flood risk

3.2 Legislation

3.2.1 EU Floods Directive & the Flood Risk Regulations

The European Floods Directive (2007) sets out the EU's approach to managing flood risk and aims to improve the management of the risk that floods pose to human health, the environment, cultural heritage and economic activity. The Directive was translated into English and Welsh law by the Flood Risk Regulations which require LLFAs and NRW to produce Flood Risk Management Plans (FRMPs).

The Directive puts in place a six-year cycle of producing Preliminary Flood Risk Assessments (PFRAs) with the aim of identifying significant Flood Risk Areas; preparing flood hazard and risk maps; and preparing Flood Risk Management Plans (FRMPs). By law, NRW must produce FRMPs for the whole of Wales every six years starting from

2015. These plans cover flooding from main rivers, the sea and reservoirs. The same law states that LLFAs must also produce FRMPs every six years to cover surface water flooding in the eight Flood Risk Areas in Wales.

PFRAs should cover the entire LLFA area for local flood risk (focusing on ordinary watercourses, surface water and groundwater flooding). Where significant Flood Risk Areas are identified using the national approach (and locally reviewed), the LLFA is then required to undertake flood risk hazard mapping and to produce Flood Risk Management Plans as illustrated in Figure 3-2. FRMPs are also completed for each RBD in Wales by NRW.

Figure 3-2: EU Floods Directive

Preliminary Flood Risk Assessment
Dec 2017

Flood Risk Areas

Flood Risk Hazard Mapping
Dec 2019

Flood Risk Management Plans

Dec 2021

The FRMP should consider objectives for flood risk management (reducing the likelihood and consequences of flooding) and measures to achieve those objectives. Significant Flood Risk Areas were not identified in Flintshire therefore the LLFA was not required to produce a FRMP.

NRW has implemented one of the exceptions for creating PFRAs, etc. for Main Rivers and coastal flooding, as they already have mapping (i.e. EA Flood Map for Planning (Rivers and Sea), Risk of Flooding from Rivers and Sea Map) and plans (i.e. CFMPs, SMPs) in place to deal with this. NRW has therefore focused their efforts on assisting LLFAs through this process. A FRMP was however completed by NRW for the Dee RBD (see Section 3.2.5).

Although the UK exited the EU in January 2020, the Flood Risk Regulations will still stand. Therefore, at the time of writing, it is envisaged that the six-year cycle discussed above will remain in place.

3.2.2 Flintshire Preliminary Flood Risk Assessment 2011 and 2017

The first cycle PFRA for Flintshire was submitted to EA Wales (now NRW) in June 2011. The PFRA provides a high-level overview of local flood risk, from sources including surface water, groundwater and ordinary watercourses.

Based on NRW's Flood Map for Surface Water (FMfSW), which at the time was the primary surface water flood map for England and Wales, the total number of properties at risk from surface water flooding in Flintshire to a depth greater than 0.1 metres was 16,800, and 5,800 to a depth greater than 0.3 metres.

Due to lower population densities in Wales, compared to England, the methodology for identifying flood risk areas within Wales were reduced. New local thresholds were used to identify where flood risk is an issue i.e. where flooding to a depth greater than 0.3 metres by a rainfall event with a 1:200 annual return period based on the following criteria:

• Where more than 200 people are affected; or

- More than 20 businesses affected: or
- More than 1 critical service affected.

For a discrete area to be designated as a Flood Risk Area using Welsh Government (WG) guidance, there must be a population of over 5,000 people in a community at risk of flooding. No Flood Risk Areas were therefore identified in Flintshire.

The second cycle PFRA, reviewed during 2017, used all relevant current flood risk data and information to update the 2011 version, and was agreed with the NRW in December 2017.

The PFRA included a review of flooding experienced since the publication of the first PFRA report in 2011 and this found that the following flood events led to locally significant harmful consequences: June 14th 2016 – Flooding from ordinary watercourses at Penlon Bagillt. Additionally, there has been no new information identified since the publication of the first PFRA report that has led to a change in understanding of future flood risk. Finally, regarding Flood Risk Areas, the cycle 1 Flood Risk Areas in Wales were reviewed as part of a detailed consolidated PFRA that covered all sources of flood risk and standardised methodology and thresholds to ensure consistent reporting across Wales. This updated document was published in December 2018.

3.2.3 Water Framework Directive & Water Environment Regulations

The purpose of the Water Framework Directive (WFD), which was transposed into English and Welsh Law by the Water Environment Regulations (2003), is to deliver improvements across Europe in the management of water quality and water resources through the aforementioned RBMPs.

NRW is responsible for monitoring and reporting on the objectives of the WFD on behalf of Welsh Government (WG). They work with WG, Ofwat, local government, non-governmental organisations (NGOs) and a wide range of other stakeholders including local businesses, water companies, industry and farmers to manage water.

The second management cycle of the WFD has begun and the second RBMPs were completed in 2015, building upon the first set completed in 2009. RBMPs are designed to address the pressures facing the water environment in the RBMP districts and the actions that will address them. The plans describe required objectives and measures to protect and improve the water environment over the next 20 years and aim to achieve WFD targets from 2015 onwards to 2021.

The RBMPs, like the CFMPs, are important documents relevant to the development of the SFCA. The SFCA should take into account the wider catchment flood cell aims and objectives and understand how it can potentially contribute to the achievement of them.

The main responsibility for FCC is to work with NRW to develop links between river basin management planning and the development of local authority plans, policies and assessments. In particular, the general programme of actions (measures) within the RBMPs highlight the need for:

- Surface Water Management Plans (see Section 3.4.3),
- Consideration of the WFD objectives (achieving good status or potential as appropriate) in the spatial planning process, including LDDs and Sustainable Community Strategies, and
- Promotion of the wide-scale use of SuDS in new development (see Section 7.6.5).

3.2.4 Catchment Flood Management Plans (CFMP)

The CFMPs were carried out by EA Wales in 2009 and were designed to establish flood risk management policies which will deliver sustainable flood risk management for the

long term. The CFMPs were used by EA Wales to help direct resources to where the areas of greatest risk.

The CFMPs contain useful information about how the catchments work, previous flooding and the sensitivity of the river systems to increased rainfall. NRW has drawn on the evidence and previous measures and proposals set out in the CFMPs to help develop the FRMPs for RBDs. Flintshire is mostly within the Dee CFMP area, with the exception of the north western area that is within the West Wales RBD which is included within the Conwy and Clwyd CFMP.

3.2.5 Flood Risk Management Plans (FRMP)

Following on from the CFMPs, FRMPs are designed to set out the risk of flooding from rivers, sea, surface water, groundwater, and reservoirs within each RBD and to detail how Risk Management Authorities (RMAs) will work with communities to manage flood risk up to 2021 for this current cycle, at the time of writing. Both the River Basin Management Plans (RBMPs) and FRMPs have been developed by NRW in tandem to ensure that flood defence schemes can provide wider environmental benefits during the same six-year cycle. Both flood risk management and river basin planning form an important part of a collaborative and integrated approach to catchment planning for water.

NRW has produced a number of guidance documents, available online, for developing FRMPs :

 $\label{lem:https://naturalresources.wales/flooding/managing-flood-risk/developing-flood-risk-management-plans/?lang=en$

Dee RBD FRMP 2015-2021

As discussed in Section 2, Flintshire is primarily within the Dee RBD therefore the management measures and policies put in place in the Dee catchment will have significant implications on flood risk management in Flintshire. Section 10 of the Dee RBD FRMP report summarised various EA and NRW measures that may help manage flood risk in the Dee catchment. Those that are applicable to Flintshire include:

Preventing risk:

- Provision of advice and support to the government.
- Regulation of all 'high risk' reservoirs in accordance with the Reservoirs Act 1975.
- Close working relationships with local planning authorities, developers, businesses and infrastructure operators to help them understand the consequences of flood risk in the locations they choose for development. Including providing advice on how new development can be designed to be more resilient to flooding. This helps to prevent inappropriate development through the planning process and ensures there is no increase in runoff from new developments.
- Ensuring works in, over, under and next to main rivers do not increase flood risk or cause pollution through effective consenting, using the consenting process to identify opportunities to improve the water environment.
- A prioritised programme of mapping and modelling to ensure flood risk information remains up-to-date and fit for purpose and to prioritise and allocate funding in high risk locations, and to influence sustainable development and emergency response.
- Research and development, and work with partners to identify best practice for reducing runoff through land use change, whilst contributing wider benefits where possible (biodiversity, soil conservation and water quality improvements).

Preparing for risk:

- Hydrometric monitoring to inform the flood warning service.
- Flood forecasting and alerting of households and individuals of potential flood events.
- Work to maintain and improve flood forecasting, flood warning and flood incident management services.
- A risk-based programme is in place to increase awareness of flood risk, what
 actions need to be taken in the event of a flood and encourage registration to
 Floodline.
- Consideration of climate change.
- Review of Asset System Management Plans regularly with regard to maintenance, funding requirements and asset condition related works.
- Provision of a flood incident response service 24 hours a day, 7 days a week, 365 days a year.
- On-site reservoir plans are in place for all 'high-risk' reservoirs.
- Working collaboratively with partners to find innovative approaches to managing flood risk.

Protecting from risk:

- Maintenance of high risk flood and coastal risk management assets, prioritising those at highest risk.
- Asset inspection programmes to ensure flood risk management assets are at the appropriate standard.
- Maintenance programmes to replace / refurbish flood risk management assets, including pumping stations and outfalls, prioritising efforts on those which have the highest flood risks.
- The Flood and Coastal Risk Management Capital Programme includes building flood defences and implementing innovative ways of managing the landscape to hold and slow down water to help reduce flood risk to communities.
- Seeking of opportunities to undertake Natural Flood Management by using all appropriate tools available, such as Woodland Creation maps.

3.2.6 Flood & Water Management Act

The FWMA was passed in April 2010. It aims to improve both flood risk management and the way we manage our water resources.

The FWMA has created clearer roles and responsibilities and helped to define a more risk-based approach to dealing with flooding. This included the creation of a lead role for LAs, as LLFAs, designed to manage local flood risk (from surface water, groundwater and ordinary watercourses) and to provide a strategic overview role of all flood risk for NRW.

The content and implications of the FWMA provide considerable opportunities for improved and integrated land use planning and flood risk management by LAs and other key partners. The integration and synergy of strategies and plans at national, regional and local scales, is increasingly important to protect vulnerable communities and deliver sustainable regeneration and growth. Table 3-1 provides an overview of the key LLFA responsibilities under the FWMA.

FWMA responsibility	Description of duties and powers	LLFA status
Local Flood Risk Management Strategy (LFRMS)	Under Section 9 of the FWMA, the LLFA has a responsibility to develop, maintain, apply and monitor a local strategy for flood risk management in its area. The local strategies will build on information such as national risk assessments and will use consistent risk-based approaches across different LA areas and catchments. The local strategy will not be secondary to the national strategy; rather it will have distinct objectives to manage local flood risks important to local communities.	Final version produced December 2013 (see Section 3.4.1). Note the LFRMS will require updating in 2020 to stay consistent with the New National Strategy due for publication in 2020
Duty to contribute to sustainable development	The LLFA has a duty to contribute towards the achievement of sustainable development.	Ongoing
Duty to comply with national strategy	The LLFA has a duty to comply with national flood and coastal risk management strategy principles and objectives in respects of its flood risk management functions.	Ongoing (see above)
Investigating flood incidents	Under Section 19 of the FWMA, the LLFA, on becoming aware of a flood in its area, has (to the extent it considers necessary and appropriate) to investigate and record details of "locally significant" flood events within their area. This duty includes identifying the RMAs and their functions and how they intend to exercise those functions in response to a flood. The responding Risk Management Authority must publish the results of its investigation and notify any other relevant RMAs.	Ongoing
Asset register	Under Section 21 of the FWMA, the LLFA has a responsibility to maintain a register of structures or features, which it considers having a significant effect on flood risk, including details on ownership and condition as a minimum. The register must be available for inspection and the Secretary of State will be able to make regulations about the content of the register and records.	The Asset Register is an on-going project with watercourse inspections being carried out when conditions are appropriate.
Duty to co-operate and powers to request information	The LLFA must co-operate with other relevant authorities in the exercise of their flood and coastal erosion management functions.	Ongoing
Ordinary watercourse consents	Under Section 23 of the FWMA, the LLFA has a responsibility to deal with enquiries and determine watercourse consents where the altering, removing or replacing of certain flood risk management structures or features that affect flow on ordinary watercourses is required. It also has provisions or powers relating to the enforcement of unconsented works.	Ongoing
Works powers	Section 25 of the Act provides a LLFA with permissive powers to undertake works to manage flood risk from surface runoff, groundwater and on ordinary watercourses, consistent with the LFRMS for the area.	Ongoing

FWMA responsibility	Description of duties and powers	LLFA status
Designation powers	The Act provides a LLFA with powers to designate structures and features that affect flooding or coastal erosion. The powers are intended to overcome the risk of a person damaging or removing a structure or feature that is on private land and which is relied on for flood or coastal erosion risk management. Once a feature is designated, the owner must seek consent to alter, remove, or replace it.	Ongoing
Duty to drain the local highway network	The Highways Authority has a duty under the Highways Act (1980) to drain the local Highway network (not Trunk roads) of surface water where it creates a nuisance. Where drainage infrastructure is provided to assist in this duty then the Highways Authority must maintain it to be fit for purpose. Maintenance of roadside drainage ditches may be the direct responsibility of the Highways Authority or the adjacent landowner.	Ongoing
Emergency planning	A LLFA is required to play a lead role in emergency planning and recovery after a flood event.	Resilience Forum (see Section 8)
Community involvement	A LLFA should engage local communities in local flood risk management issues. This could include the training of community volunteers, the development of local flood action groups and the preparation of community flood plans, and general awareness raising around roles and responsibilities plans.	Various ongoing (see Section 8.1)
SuDS Approving Body	The Act establishes each County Council in Wales as a SuDS Approving Body (SAB), adopted in Wales in January 2019. The SAB has responsibility for the approval of proposed drainage systems in new developments and redevelopments, subject to exemptions and thresholds. Approval must be given before the developer can commence construction. The SAB is also responsible for adopting and maintaining SuDS, which serve more than one property, where they have been approved. The SAB will approve but not adopt a drainage system in a publicly maintained road. The highways authorities will be responsible for maintaining SuDS in public roads, to National Standards.	Contact SAB@Flintshire.gov.uk to request a short meeting or telephone discussion in relation to general SuDS approval requirements for a development. (See Section 3.3.3)

Table 3-1: Key LLFA responsibilities under the FWMA

3.2.7 Environment Act (Wales)¹

The Environment Act (Wales) puts in place the legislation needed to plan and manage Wales' natural resources in a more proactive, sustainable and joined-up way.

In Wales, the nature, land, water and air are the ultimate resource. But, demands on these natural resources are increasing and one of the greatest challenges is to find a way to secure healthy, resilient and productive ecosystems for the future whilst still meeting the challenges of creating jobs, housing and infrastructure. The Environment Act helps us to meet this challenge.

 $[\]label{eq:local_local_local} \begin{tabular}{ll} 1 https://gov.wales/flooding-coastal-erosion \\ DCX-JBAU-XX-XX-RP-Z-0001-S3-P02-Draft_Report \\ \end{tabular}$

Sustainable management of natural resources is about managing these resources in a joined-up way that delivers real outcomes for the environment, people, the economy and communities.

The aim is to make the most of the opportunities that Wales' natural resources present while safeguarding and building the resilience of natural systems to continue to provide these benefits over the long term.

The Act also provides NRW with new tools to help manage our natural resources sustainably. Land management agreements allow NRW to work with landowners to manage their land in a sustainable way. Experimental schemes allow NRW to trial new ways of working. A new biodiversity duty included in the Act helps to reverse the decline and secure the long-term resilience of biodiversity in Wales.

For flood mitigation, government will focus on using more natural flood management (see Section 6.2) solutions; increasing the uptake of SuDS, especially in new development (see Section 7.6.5); and improving the resilience of properties at risk of flooding and the time it takes them to recover should flooding occur.

3.3 **Planning policy**

Planning Policy Wales (PPW)

The PPW Edition 10^2 document was published in December 2018, setting out the land use planning policies of Welsh Government. The document is supported by Technical Advice Notes (TANs), including TAN 15: Development and Flood Risk³.

The Wales Spatial Plan - People, Places, Future⁴ (2004, updated 2008) sets a strategic framework to guide future development and policy interventions. It integrates the spatial aspects of national strategies for social inclusion and economic development, health, transport and environment, translating Welsh Government's sustainable development duty into practice.

PPW, the TANs, circulars and policy clarification letters comprise national planning policy. National planning policy and the Wales Spatial Plan should be considered in the preparation of development plans. They may be material to decisions on individual planning applications and will be taken into account by Welsh Ministers and Planning Inspectors in the determination of called-in planning applications and appeals.

The PPW document acts as guidance for LPAs to help them prepare their LDPs and take development management decisions. Detailed advice on the preparation of LDPs is contained in PPW and the Development Plans Manual - Edition 3 (2020). Section 3.3.5 of this report summarises LDP requirements and also the ongoing preparation of the Flintshire LDP.

3.3.2 National Development Framework for Wales

The Planning Directorate has produced a draft National Development Framework 2020-2040⁵ (NDF). The NDF sets out a 20-year land use framework for Wales and will eventually replace the Wales Spatial Plan discussed above. Once adopted, the NDF will be subject to review every five years

Welsh Government state that the NDF will:

- Set out where national important growth and infrastructure is needed and how the planning system, national, regionally, and locally, can deliver it,
- Provide direction for Strategic and Local Development Plans and support the determination of Developments of National Significance,

https://gov.wales/sites/default/files/publications/2019-02/planning-policy-wales-edition-10.pdf http://gov.wales/docs/desh/publications/040701tan15en.pdf

[/]gov.wales/sites/default/files/publications/2019-05/people-places-future-the-wales-spatial-plan-update-

⁵ https://gov.wales/sites/default/files/consultations/2019-08/Draft%20National%20Development%20Framework.pdf
DCX-JBAU-XX-XX-RP-Z-0001-S3-P02-Draft_Report

- Sit alongside PPW to provide the context for land use planning,
- Support national economic, transport, environmental, housing, energy and cultural strategies and ensure they can be delivered through the planning system.

3.3.3 Technical Advice Note 15: Development and Flood Risk

Consultation on a revised TAN 15 ended on 17 January 2020. At the time of writing, the consultation draft of TAN 15 is caveated with the text below.

Based on this statement, this updated SFCA is based on the current TAN 15 guidance document from 2004.

TAN 15 provides technical guidance supplementing the policy set out in PPW in relation to development and flooding. It provides a framework within which risks arising from both river and coastal flooding, and from additional runoff from development in any location, can be assessed.

The overarching aim of TAN 15 is to take a precautionary approach and direct development away from areas at high risk of flooding, where possible. Where development must be considered in high risk areas, these developments must be justified using the applicable tests set out in TAN 15.

Wales has been divided into three flood risk zones, ranging from Zone A, at little or no risk, to Zone C at high risk. Zone C is further subdivided into C1 and C2 indicating whether the area is subject to flood defence infrastructure or not. Collectively, these risk zones form Welsh Government's Development Advice Map (DAM). The zones of the DAM are described in Table 3-2.

Description of zone	Zone	Use within the Precautionary Framework
Considered to be at little or no risk of fluvial or coastal / tidal flooding	A	Used to indicate that justification test is not applicable and no need to consider flood risk further
Areas known to have been flooded in the past evidenced by sedimentary deposits	В	Used as part of a precautionary approach to indicate where site levels should be checked against the extreme (0.1%) flood level. If site levels are greater than the flood levels used to define adjacent extreme flood outline there is no need to consider flood risk further
Based on NRW extreme flood outline, equal to or greater than 0.1% (river, tidal or coastal)	С	Used to indicate that flooding issues should be considered as an integral part of decision making by the application of the justification test including assessment of consequences. In accordance with Welsh Government's letter to Chief Planning Officers of 9 January 2014, DCC will need to now also consider the impaction of climate change into account in terms of development planning.

Description of zone	Zone	Use within the Precautionary Framework
Areas of the floodplain which are developed and served by significant infrastructure, including flood defences	C1	Used to indicate that development can take place subject to application of justification test, including acceptability of consequences.
Areas of the floodplain without significant flood defence infrastructure	C2	Used to indicate that only less vulnerable development should be considered subject to application of a justification test, including acceptability of consequences. Emergency services and highly vulnerable development should not be considered

Table 3-2: Flood risk zones of the DAM as defined by TAN 15

As well as the risk of flooding, the type of development proposed is important when assessing flood risk. The three categories of development used in TAN 15 are shown in Table 3-3.

Development category	Types
Emergency services	Hospitals, ambulance stations, fire stations, police stations, coastguard stations, command centres, emergency depots and buildings used to provide emergency shelter in time of flood.
Highly vulnerable development	All residential premises (including hotels and caravan parks), public buildings (e.g. schools, libraries, leisure centres), especially vulnerable industrial development (e.g. power stations, chemical plants, incinerators), and waste disposal sites
Less vulnerable development	General industrial, employment, commercial and retail development, transport and utilities infrastructure, car parks, mineral extraction sites and associated processing facilities, excluding waste disposal sites.

Table 3-3: Development categories from TAN 15

Following the precautionary approach, the central policy aim of TAN 15 for development states that:

"New development should be directed away from Zone C and towards land in Zone A, otherwise to Zone B, where river or coastal flooding will be less of an issue. In Zone C the tests outlined in sections 6 and 7 will be applied, recognising, however, that Highly Vulnerable development and Emergency Services in Zone C2 should not be permitted. All other new development should only be permitted within zones C1 and C2 if determined by the planning authority to be justified in that location."

Figure 3-3 presents a flow chart of the TAN 15 procedure for assessing suitability of areas for development. These considerations are those that should be used during site specific FCAs and through this SFCA.

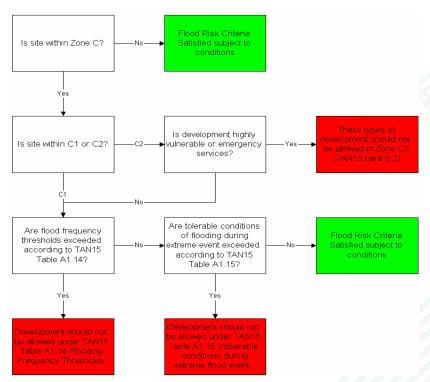


Figure 3-3: Flow chart of the TAN 15 procedure for assessing acceptability of development in relation to flood risk

The presence of flood defences complicates understanding of risk (becomes residual risk) as the actual risk may be reduced. However, where residual risk exists, if defences are breached or overtopped for example, then areas may be considered to be extremely vulnerable due to the speed of flooding. In such cases, TAN 15 suggests that NRW should advise the LPA on likely flooding consequences and the LPA must then decide of the acceptability of the proposed development.

Where development is allowed, measures to manage the risk must be put in place which may include developers taking responsibility for the ongoing maintenance of flood defences (TAN 15 paragraph 7.5). Detailed assessment of the flood limiting impacts of defences should be carried out by completing site specific FCAs. This will allow informed decisions to be made.

Justification test

The justification test is required to justify locating development within Zone C. Section 6 of TAN 15 explains that development, including transport infrastructure, can only be justified if the following criteria can be met.

- Its location in Zone C is necessary to assist, or be part of, a local authority regeneration initiative or a local authority strategy required to sustain an existing settlement⁶; or
- ii. Its location in Zone C is necessary to contribute to key employment objectives supported by the local authority, and other key partners, to sustain an existing settlement or region; and
- iii. It concurs with the aims of PPW and meets the definition of previously developed land (PPW fig 2.1); and
- iv. The potential consequences of a flooding event for the particular type of development have been considered, and in terms of the criteria contained in sections 5 and 7 and appendix 1 (of TAN 15) found to be acceptable.

Section 7 relates to the consequences of flooding and is applicable to those sites that have passed the justification test of Section 6. The first three parts of the justification test should be applied by the LPA whilst the fourth part can be informed by the outcomes of this SFCA for those sites in Zone C. The distinction between Zones C1 and C2 is critical. Within Zone C2, allowable development is restricted to less vulnerable development types (see Table 3-3), whereas this restriction does not apply for sites located in Zone C1. However, any development type in either C1 or C2 must pass the fourth part of the justification test, using the criteria, described in Section 7 on flooding consequences, to justify the development in terms of flood risk.

Assessing Flood Consequences

Where development in Zone C can be justified under Section 6, assessment must be made to establish whether suitable mitigation measures can be incorporated to ensure minimal risk to life, property, infrastructure and the natural environment (see Section 7 of TAN 15).

There are certain acceptability criteria for flooding consequences (Appendix A1.11 – A1.15) whereby a flooding frequency threshold for different development types should be met to ensure developments are flood free up to the appropriate threshold frequency. This may include mitigation measures where appropriate which may reduce the frequency of flooding from that which may occur naturally. However, there are limitations of data and estimations, with issues of uncertainty.

Beyond the threshold frequency, proposed developments would be expected to flood under extreme conditions. To protect people and property at these locations TAN 15 lays down tolerable criteria for the anticipated flooding during an extreme event. Again, this can be assessed to include appropriate mitigation measures.

Policy requirements

Section 9 of TAN 15 contains a table summarising the policy requirements of development and flood risk, based on what DAM zone a proposed development is in. This table should be used by the LPA when allocating development to include in the LDP or by developers at the planning application stage.

Surface water

Section 8 of TAN 15 discusses how surface water runoff from new development should be dealt with and how SuDS should be implemented, where suitable, in all new development, irrespective of what fluvial or tidal DAM zone the development is located in. The policy requirements summary table of Section 9 of TAN 15 states that surface water for proposed new developments should be accounted for as a planning requirement.

FCC has produced a Supplementary Planning Guidance (SPG) note concerning surface water flood risk – 'LPGN 29 – Management of Surface Water for New Development', which states that this SPG should be afforded considerable weight as a material

DCX-JBAU-XX-XX-RP-Z-0001-S3-P02-Draft_Report

⁶ Regeneration initiatives will be comprehensive, multi-approach and form part of an integrated suite of initiatives which have been subject to public consultation. Local authority strategy will be the development plan for the area (deposit version as minimum).

planning consideration. This SPG was adopted in January 2017. The note includes details on surface water design criteria and SuDS for new development, including the minimum surface water discharge limits from new developments. Also included is an indicative drainage proposal which contains the minimum requirements for surface water management to be included within a planning application. This SPG can be found online via:

https://www.flintshire.gov.uk/en/PDFFiles/Planning/Adopted-SPGNs/SPGN-No-29.-Management-of-Surface-Water-for-New-Development.pdf

There is also a draft SPG that is specific to SuDS – 'No. 19 Water Conservation and Sustainable Drainage Systems' –

https://www.flintshire.gov.uk/en/PDFFiles/Planning/Revised-LPGNs/LPGN-19.pdf

Paragraph 8.5 of TAN 15 states:

"Planning authorities may consider imposing a condition requiring developers to examine the SuDS option and provide the planning authority with details and options. If it is demonstrated that SuDS could work on a site, and subject to the appropriate agreements being in place with regard to adoption, then the planning authority would require SuDS to be implemented. Developers will need to give good reason why SuDS could not be implemented. If a conventional drainage system does not improve the status quo or has a negative impact then this can be a valid reason for refusal.".

FCC believes that, in practice, there are likely to be very few sites in Flintshire where SuDS would not be technically possible. Section 3.3.6 provides more detail on the Council's SPG notes. Section 4.5 of this report discusses surface water flood risk, in the context of this SFCA, in more detail. Section 7.6.5 provides more detail on SuDS.

Implementing SuDS within Wales and SuDS Approval Bodies

Schedule 3 of the FWMA states the requirement for surface water drainage for new developments to comply with mandatory National Standards for SuDS. Schedule 3 also places a duty on local authorities as SuDS Approving Bodies (SAB) to approve, adopt and maintain systems compliant with Section 17 of the Schedule.

In light of Schedule 3, Welsh Government launched a consultation on draft regulations for the implementation of SuDS on new developments in November 2017. As of January 2019, all new developments of more than 1 house or where the construction area is of 100 $\,\mathrm{m}^2$ or more, require sustainable drainage to manage onsite surface water. Surface water drainage systems must be designed and built in accordance with mandatory standards for sustainable drainage published by Welsh Ministers.

Such SuDS schemes must be approved by the Council, acting in its SAB role, before construction work can commence. The SAB has a duty to adopt compliant systems so long as it is built and functions in accordance with the approved proposals, including any SAB conditions of approval.

The SAB is established to:

- Evaluate and approve drainage applications for new developments where construction work has drainage implications, and
- Adopt and maintain sustainable surface water drainage systems according to Section 17 of Schedule 3 (FWMA).

The SAB also has powers of inspection and enforcement and uses discretionary powers to offer non-statutory pre-application advice.

A developer, agent or individual seeking planning permission for a development that is of more than 1 house or of 100 m² or more of construction area, must seek SAB approval alongside planning approval. Construction cannot commence until both SAB and planning permissions are granted. Existing sites and developments with planning permission granted or deemed to be granted (whether or not subject to any conditions as to a reserved matter) or for which a valid application has been received but not determined by 7 January 2019, will not be required to apply for SAB approval. However, SAB approval will still be required if the planning permission was granted

subject to a condition as to a reserved matter and an application for approval of the reserved matter was not made before 7 January 2020.

How to seek SAB approval and pre-application advice

a) Application for pre-application advice

The SAB offers a pre-application advice service to discuss in detail your site's drainage requirements and what needs to be submitted with your application. Whilst at the start, this service was free to encourage early engagement, pre-application fees may now be charged. Initially, the SAB should be contacted online via SAB@Flintshire.gov.uk to request a short meeting or telephone discussion in relation to general SAB approval requirements for the development. Any subsequent site-specific pre-application advice requires formal submission of details via the 'Application Form for Pre-Application Advice', upon receipt of which a unique case reference number will be issued enabling SAB officers to engage in further formal pre-application discussions. Note there is no statutory timescale relating to the pre-application process.

b) Application for full approval of SuDS

Applications must be submitted using the Application Form for Full Application Approval of SuDS. Once a full SAB application is received it will be determined solely on the information provided and only in exceptional circumstances will the SAB contact the applicant during its assessment, therefore it is essential that any technical uncertainties or issues are dealt with by all parties as part of the pre-application advice process discussed above. The form must be fully completed and accompanied by all necessary technical supporting information as indicated in the guidance or as otherwise directed during pre-application discussions.

On confirmation that the application form is complete and valid, the SAB will provide details of how to make payment of the prescribed application fee and provide a unique application reference. This must be quoted on all future correspondence. A valid application will not be processed until the application fee is received and cleared in full. Note the SAB has seven weeks upon validation to determine the application.

Further details are provided via:

https://www.flintshire.gov.uk/en/PDFFiles/Planning/SuDS/SuDS-Application-for-Pre-Application-Advice.pdf

3.3.4 Applying TAN 15 for the SFCA

Application of TAN 15, as part of this SFCA, should, in the first instance, advocate moving development out of areas of high risk to areas of lower risk. Following this approach, any development within Zone C (the 0.1% AEP flood extent) should be avoided. To limit the occurrence of flooding issues in planning decisions, land within Zone C (particularly Zone C2) should not be allocated for development where possible. The SFCA Maps, in Appendix A, show both the 0.1% flood extent (Flood Zone 2) and Zone C of Welsh Government's Development Advice Map (DAM).

It is, however, accepted that there may be instances where development within Zone C (in particular Zone C1) may be required, justifying the conditions in Section 6 of TAN 15. The development must also pass the flooding frequency and tolerable condition criteria discussed in the previous sections. Consideration of detailed and specific mitigation measures are beyond the scope of the SFCA as these are site-specific and can be complex. However, consideration of the unmitigated flooding criteria will give a good indication of whether mitigation is likely to be effective. For example, it is less likely that a site, which is at frequent risk from deep and fast flowing water can be successfully mitigated, can achieve the tolerable criteria and limiting wider impacts are likely to be difficult to achieve.

The SFCA does not remove the need for site-specific FCAs for individual developments as more detailed assessments would be required to produce a greater understanding of flood risk at any particular site. This would include

detailed proposals for mitigating flood risk and achieving the flood risk tolerable criteria.

The information provided in this SFCA allows the LPA to have a good understanding of flood risk across the key areas of the County. This information should inform spatial planning decisions, ideally to avoid Zone C areas or, where it is necessary, to look at development in Zone C with a better understanding of achievable mitigation.

3.3.5 Local Development Plan

LDPs provide guidelines as to what type of development can be built and where it can be located over a 15-year period. Each LPA in Wales is required to produce an LDP for its area. In determining where new development can take place, consideration must be given as to the need for employment land, housing, leisure facilities whilst also safeguarding the local environment.

Once prepared, the LDP is subject to examination by an independent Planning Inspector to consider the 'soundness' of the Plan, including public hearings. Once the LDP is adopted, the LPA must prepare an Annual Monitoring Report (AMR) demonstrating how the Plan is delivering against its objectives. A full review must be carried out every four years to ensure the Plan remains current. Community engagement is vital to the plan making process. LPAs publish a Delivery Agreement at the start of the LDP process setting out the key stages and when people can get involved.

The LDP preparation process is set out online via several documents:

https://gov.wales/development-plans

The Development Plans Manual (Edition 3⁷), March 2020, replaces the LDP Manual from 2015. The most significant changes are:

- The Planning Wales (Act) (PWA) 2015,
- The Well-being of Future Generations Act 2015,
- Planning Policy Wales (PPW) (Edition 10, December 2018).

Flintshire Local Development Plan

Following the adoption of the Flintshire UDP, the Council is embarking on the preparation of its LDP for the County. The LDP will focus on delivering sustainable development in the County up to 2030. The LDP differs from the UDP in terms of how it is prepared. A key feature of the LDP process is the opportunity for engagement with a variety of stakeholders from early on in the process, in order that they can have the opportunity to influence the Plan as it progresses.

Flintshire's LDP will contain policies and proposals which together will provide for the development needs of the County over the Plan period (2015-2030) as well as protecting the social and environmental assets of the County. The LDP will focus on delivering sustainable development in the County through:

- Policies which will help guide decisions on planning applications,
- Proposals for the development of housing, retail, employment and other land uses, and
- Policies which seek the protection and enhancement of the natural and built environment.

The latest news on the development of the LDP can be found online via:

 $\label{lem:https://www.flintshire.gov.uk/en/Resident/Planning/Flintshire-Local-Development-Plan.aspx$

3.3.6 Supplementary Planning Guidance

SPG notes provide detailed quidance on a range of development issues and topics. FCC has a number of adopted SPG notes providing additional advice on particular topics or policy areas (such as those for surface water, discussed in Section 3.3.3), and also by expanding upon statutory policies, for example, guidance on the design of roof extensions in a specific locality. The SPG notes should therefore be afforded considerable weight as a material planning consideration to support the LDP policies.

All development proposals should take account of the adopted SPG note where relevant, which includes detailed guidance concerning individual sites, development issues, and particular types of development and will be a material consideration in determining planning applications. In terms of material considerations, greater weight can be attached to a guidance note if it has been formally adopted as a SPG.

The currently adopted SPG notes, at the time of writing, are available online via: https://www.flintshire.gov.uk/en/Resident/Planning/Supplementary-planning-

guidance.aspx

3.4 **Flood Risk Management Policy**

3.4.1 National and Local Flood Risk Management Strategies

As presented in Figure 3-1, the FWMA establishes how flood risk will be managed within the framework of national strategies for Wales and local strategies for LLFAs.

The National Strategy for Flood and Coastal Erosion Risk Management in Wales was first developed in 2011 by Welsh Government under the terms of the FWMA. Welsh Government ran a consultation on a new Draft National Strategy from 24 June to 16 September 20198. Once adopted, the draft strategy will supersede the 2011 version.

The National Strategy sets out the principles for how flood risk should be managed and provides strategic information about different types of flood risk and which organisations are responsible for their effective management. The FWMA requires risk management authorities (RMAs), i.e. local authorities, NRW, wastewater and sewerage companies and highways authorities, to work together and act consistently with the National Strategy in Wales in carrying out their flood and coastal erosion risk management functions effectively, efficiently and in collaboration with communities, businesses and infrastructure operators to deliver more effective flood risk management.

LLFAs have responsibility for developing a LFRMS for their area covering local sources of flooding (see Table 3-1). The Local Strategy produced must be consistent with the National Strategy. The Local Strategy should set out the framework for local flood risk management functions and activities and should raise awareness of local organisations with responsibilities for flood risk management in the area. The strategy should also facilitate partnership arrangements to ensure co-ordination between local organisations and an assessment of flood risk and plans and actions for managing risk, as set out under Section 9 of the FWMA.

The following link provides guidance from WG for developing LFRMSs:

https://gov.wales/local-flood-risk-management-strategy-guidance

Flintshire Local Flood Risk Management Strategy, 20139

The Flintshire LFRMS was adopted in December 2013, following public consultation. The Local Strategy sets out how FCC will manage risk from all types of flooding such as surface water runoff, groundwater and ordinary watercourses for which the Council has a responsibility as LLFA, and other types of flooding where local agents can play a supporting role to lead agencies.

⁸ https://gov.wales/national-strategy-flood-and-coastal-erosion-risk-management 9 https://www.flintshire.gov.uk/en/PDFfiles/Flooding-and-Drainage/Flintshire-Local-Flood-Risk-Management-

The LFRMS contains ten strategic objectives for managing flood and coastal erosion risk in Flintshire, as shown in Figure 3-4.

Ten Objectives for Flintshire County Council

- To improve the understanding of flooding (surface water, groundwater and ordinary watercourses) and coastal risks;
- Increasing individual and community awareness and preparedness for flood and coastal erosion events and the impacts of climate change on flood risk;
- To work together (RMA, stakeholders and public) to reduce flood and coastal risks, sharing data and resources to the greatest benefit;
- To reduce the impact and consequences for individuals, communities, businesses and the environment from flooding and coastal erosion;
- To ensure that Flood Risk Management issues are considered when planning decisions regarding development are made;
- Improve and/or maintain the capacity of existing drainage systems by targeted maintenance;
- Take a sustainable approach to flood risks management balancing economic, environmental and social benefits;
- 8. Increase the use of approaches that utilise the natural environment;
- Ensure the development of skills required to implement effective and innovative flood risk management; and
- Identify projects and programmes which are affordable, maximising capital funding from internal and external sources.

Figure 3-4: FCC strategic objectives (extract from Flintshire LFRMS document)

FCC is also required to report of progress as to how it is responding to the FWMA duties every quarter to the Regional Flood and Coastal Committee for Wales (RFCC). The whole LFRMS should be formally reviewed every six years. Flintshire's Local Strategy is, at the time of writing, due to be updated. It is recommended this update is carried out in line with the National Strategy update due in 2020.

3.4.2 Shoreline Management Plan: Managed retreat and managed re-alignment in Flintshire¹⁰

The Shoreline Management Plan (SMP2) is a non-statutory, high level, policy document for coastal flood and erosion risk management planning. It takes account of other existing planning initiatives and legislative requirements and is intended to inform wider strategic planning. Local planning authorities should consider SMP2 policies when formulating their statutory land use development plans. There are three shoreline management policies in place along Copeland's coastline, namely 'hold the line', 'managed realignment' and 'no active intervention'.

Policy Option	Description
Hold the line	By maintaining or changing the current standard of protection. This policy includes those situations where work is carried out in front of the existing defences (such as beach recharge, rebuilding the toe of a structure, building offshore breakwaters and so on) to improve or maintain the standard of protection provided by the existing defence line. It also includes work behind existing defences (such as building secondary flood defences) where this work would form an essential part of maintaining the current coastal defence system.
Advance the line	By building new defences on the seaward side of the original defences. Use of this policy is limited to those policy units where significant land reclamation is considered.
Managed realignment	By allowing the shoreline to move backwards or forwards, with management to control or limit movement (such as reducing erosion or building new defences on the landward side of the original defences).
No active intervention	Where there is no investment in coastal defences or operations.

Table 2: Descriptions of the four shoreline management policies used in SMP2

Figure 3-5: SMP2 policies for managing the shoreline (extracted from North West England and North Wales SMP2 report)

The North West England and North Wales Shoreline Management Plan SMP2 covers the coastline from the Great Orme in Llandudno, Conwy to the Scottish Broder on the Solway Firth. It also covers the major estuaries within this area including the River Dee. Sub-Cell 11a - Great Orme's Head to Southport contains all of the Flintshire Shoreline that is covered within the SMP.

The dune frontages west of the Point of Ayr are to be maintained through a Managed Realignment policy, this allows natural processes to continue while monitoring whether beach recharge or secondary defences are required in the future. Along the Dee frontages, a Hold the Line policy is adopted where there is significant development, infrastructure or other assets. Managed Realignment will be explored in the medium to long term where there may be opportunities for habitat creation elsewhere.

Hold the line

Where hold the line has been proposed, the intent is to manage the risk from coastal flooding or erosion to important assets and interests in an appropriate way. This could be achieved by maintaining current defences or by constructing new defences in the future. When upgrading defences or significant changes in management practice is required, this is progressed through a Strategy or Scheme and will be subject to more detailed appraisal, consultation and consenting.

Managed realignment

Managed realignment provides the opportunity to create a more natural coastline by allowing sediment movement which helps maintain beaches or provides space for natural landward roll-back of saltmarsh, beaches or dunes in response to ongoing coastal change and sea level rise.

The SMP2 recognises that there are a number of opportunities to move defences landward, or to remove defences so the shoreline realigns back to higher ground, in order to create more space for salt marshes and hence improve the natural defence and provide environmental benefits. However, in locations where managed realignment is proposed, the SMP2 does not generally define or predict the new shoreline or defence position. In theory, the shoreline could be moved inland up to where the area at risk of coastal flooding ends, however in reality defences are often not moved back that far, due to the presence of built or natural assets or infrastructure, where for example, Network Rail are able to intervene to protect the railway.

No active intervention

This policy option lets nature take its course on the shoreline without any management and is usually in place where risk management is not required, or where sediment erosion from cliffs is required to feed beaches or to allow beaches, dunes or saltmarsh to adjust or rollback naturally as sea levels rise. This policy can also apply where there is insufficient national economic justification to maintain defences in the long term and therefore no funding available from public sources.

Surface Water Management Plans

In June 2007, widespread extreme flooding was experienced in the UK. The UK Government review of the 2007 flooding, chaired by Sir Michael Pitt recommended

"...Local Surface Water Management Plans (SWMPs) ... coordinated by local authorities, should provide the basis for managing all local flood risk."

The UK Government's SWMP Technical Guidance document¹¹, 2011, defines a SWMP as:

- A framework through which key local partners with responsibility for surface water and drainage in their area, work together to understand the causes of surface water flooding and agree the most cost-effective way of managing surface water flood risk.
- A tool to facilitate sustainable surface water management decisions that are evidence based, risk based, future proofed and inclusive of stakeholder views and preferences.
- A plan for the management of urban water quality through the removal of surface water from combined systems and the promotion of SuDS.

As a demonstration of its commitment to SWMPs as a structured way forward in managing local flood risk, Defra announced an initiative to provide funding for the highest flood risk authorities to produce SWMPs.

FCC has not developed a SWMP for Flintshire, nor for any areas or communities within Flintshire. It is recommended that the LLFA uses information from this SFCA to ascertain whether certain locations at high surface water flood risk may benefit from a SWMP.

Guidance on surface water management is online available via:

https://www.gov.uk/guidance/flood-risk-management-information-for-flood-riskmanagement-authorities-asset-owners-and-local-authorities

3.4.4 Flood risk partnerships and partnership plans

FCC has been involved in the development of a number of partnerships designed to provide collaboration between public agencies, businesses and the community. Partnerships and plans that affect the County (see Section 8 on emergency planning for more information) include:

- Regional Flood and Coastal Committee RFCC only one in Wales; namely the Flood Risk Management Wales Group (FRMW), established by NRW under the FWMA to bring together members appointed by the LLFAs and independent members. Responsible for reviewing flood defence across Wales and determining how defence infrastructure will be managed in the future.
- North Wales Local Resilience Forum (LRF) see Section 8.

3.5 Roles and responsibilities

Section 6 of the FWMA 2010 defines the roles and responsibilities of the RMAs. In Wales these include NRW, all 22 Welsh local authorities (who act as LLFAs), highway authorities and water and sewerage companies. There are other bodies that have a non-statutory role in FCERM, including private landowners and owners of infrastructure assets such as Network Rail and the National Trust.

The responsibilities for the RMAs under the FWMA are summarised below.

3.5.1 NRW as an RMA

Statutory duties:

- Reporting to the Minister on flood and coastal erosion risk in Wales including application of the National Strategy, and
- The establishment of a Regional Flood and Coastal Committee (Flood Risk Management Wales).

NRW is the sole RMA charged with monitoring and reporting on the National Strategy's implementation. In undertaking this role, they should:

- Collect data on progress from Risk Management Authorities using existing avenues wherever possible,
- Report factual information to Welsh Government, and
- As requested, provide interpretive advice to Welsh Government.

In addition to their statutory duties, NRW has a number of permissive powers. These are powers that allow them to do something, but do not compel them to. such permissive powers include:

- Powers to request information,
- The ability to raise levies for local flood risk management works, via the Regional Flood and Coastal Committees,
- Powers to designate certain structures or features that affect flood or coastal erosion risk.
- The expansion of powers to undertake works to include broader risk management actions, and
- The ability to cause flooding or coastal erosion under certain conditions.

These responsibilities are also consistent with NRW's role in relation to the Flood Risk Regulations 2009. These allocate specific responsibility for conducting assessments in relation to mapping and planning the risks of flooding from main rivers, the sea and reservoirs to NRW, as well as providing guidance to local authorities on flooding from other sources.

NRW's Local Operational Role as a coastal erosion risk management authority, includes emergency planning, advising on the planning process and managing flooding from main rivers, reservoirs and the sea.

3.5.2 FCC as an RMA

Statutory duties:

- · Strategic leadership,
- · Compliance with the National Strategy,
- · Perform the role of a SAB,
- · Cooperation with other authorities,
- · Recording and investigating flood incidents,
- · Keeping a register of assets likely to affect flood risk, and
- Contribute to sustainable development.

Permissive powers:

- Powers to designate structures and features that affect flood or coastal erosion risk,
- Powers to request information,
- The expansion of powers to undertake works to include broader risk management actions, and
- The ability to cause flooding of coastal erosion under certain conditions.

3.5.3 Water companies as RMAs

Statutory duties:

- To act in a manner that is consistent with the National Strategy and have regard to local strategies,
- To cooperate and share information with other RMAs,
- Has a duty to be subject to scrutiny from LLFA,
- Responsibility for managing and recording the risks of flooding from water and foul or combined sewer systems providing drainage from buildings and yards,
- To adopt private sewers, and
- To be a statutory consultee to the SAB.

3.5.4 Highways Authority (FCC) as an RMA

Statutory duties:

- To act consistently with the National Strategy and Local Strategy,
- Responsibility for ensuring effective drainage of local roads in so far as ensuring drains, gullies and culverts are maintained,
- · Has a duty to be subject to scrutiny from LLFA,
- Required to adopt any SuDS approved by the SAB that is located within the highway boundary,

Permissive powers:

Powers to deliver works necessary to protect highways from flooding.

3.5.5 The local community

- · Responsibility for protecting their property from flooding,
- Must be consulted on the Local Strategy by the LLFA, and
- Has a key role in ensuring the Local Strategy is capable of being successfully
 delivered within the community. It should actively participate in this process
 and be engaged by the LLFA.

•

3.5.6 Riparian owners

A riparian owner is someone who owns land or property alongside a river or other watercourses. A watercourse is any natural or artificial channel through which water flows including flow through a culvert, ditch, drain, cut, dyke, sluice or private sewer.

Statutory responsibilities:

- Maintaining watercourses,
- Allowing the flow of water to pass without obstruction, and
- Controlling invasive alien species.

Further guidance for riverside property owners in Wales can be found via:

https://natural resources.wales/media/680422/living-on-the-edge-final-jan-2017.pdf

3.5.7 Developers

Have a vital role in ensuring effective local flood risk management by avoiding development in areas at risk of flooding. The Local Strategy and this SFCA should form a key element of local planning guidance for developers.

4 Understanding Flood Risk

4.1 Sources of flooding

Flooding is a natural process and can happen at any time in a wide variety of locations. It constitutes a temporary covering of land not normally covered by water and presents a risk when people and human or environmental assets are present in the area that floods. Assets at risk from flooding can include housing, transport and public service infrastructure, commercial and industrial enterprises, agricultural land and environmental and cultural heritage. Flooding can occur from many different and combined sources and in many different ways. Major sources of flooding (also see Figure 4-1) include:

- Fluvial (main rivers and ordinary watercourses) inundation of floodplains from rivers and watercourses; inundation of areas outside the floodplain due to influence of bridges, embankments and other features that artificially raise water levels; overtopping or breaching of defences; blockages of culverts; blockages of flood channels/corridors.
- Tidal sea; estuary; overtopping of defences; breaching of defences; other flows (e.g. fluvial surface water) that could pond due to tide locking; wave action.
- **Surface water** surface water flooding covers two main sources including direct runoff from adjacent land (pluvial) and surcharging of piped drainage systems (public sewers, highway drains, etc.).
- **Groundwater** water table rising after prolonged rainfall to emerge above ground level remote from a watercourse; most likely to occur in low-lying areas underlain by permeable rock (aquifers); groundwater recovery after pumping for mining or industry has ceased.
- Infrastructure failure reservoirs; canals; industrial processes; burst water mains; blocked sewers or failed pumping stations.

Different types and forms of flooding present a range of different risks and the flood hazards of speed of inundation, depth and duration of flooding can vary greatly. With climate change, the frequency, pattern and severity of flooding are expected to change and become more damaging.

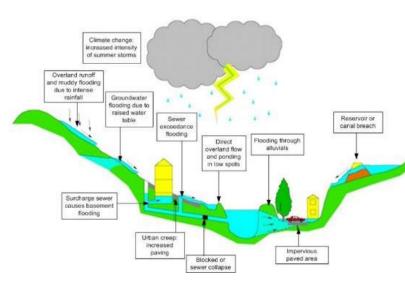


Figure 4-1: Flooding from all sources

4.2 Likelihood and consequence

Flood risk is a combination of the likelihood of flooding and the potential consequences arising. It is assessed using the source – pathway – receptor model as shown in Figure 4-2 below. This is a standard environmental risk model common to many hazards and should be the starting point of any assessment of flood risk. However, it should be remembered that flooding could occur from many different sources and pathways, and not simply those shown in the illustration below.

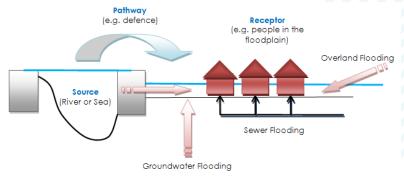


Figure 4-2: Source-Pathway-Receptor Model

The principal sources are rainfall or higher than normal sea levels, the most common pathways are rivers, drains, sewers, overland flow and river and coastal floodplains and their defence assets and the receptors can include people, their property and the environment. All three elements must be present for flood risk to arise. Mitigation measures have little or no effect on sources of flooding, however they can block or impede pathways or remove receptors.

The planning process is primarily concerned with the location of receptors, taking appropriate account of potential sources and pathways that might put those receptors at risk. It is therefore important to define the components of flood risk in order to apply this guidance in a consistent manner.

4.2.1 Likelihood

Likelihood of flooding is expressed as the percentage probability based on the average frequency measured or extrapolated from records over a large number of years. A 1% probability indicates the flood level that is expected to be reached on average once in a hundred years, i.e. it has a 1% chance of occurring in any one year, not that it will occur once every hundred years.

Considered over the lifetime of development, such an apparently low frequency or rare flood has a significant probability of occurring. For example:

- A 1% flood has a 26% (1 in 4) chance of occurring at least once in a 30-year period - the period of a typical residential mortgage,
- And a 49% (1 in 2) chance of occurring in a 70-year period a typical human lifetime.

4.2.2 Consequence

The consequences of flooding include fatalities, property damage, disruption to lives and businesses, with severe implications for people (e.g. financial loss, emotional distress, health problems). Consequences of flooding depend on the hazards caused by flooding (depth of water, speed of flow, rate of onset, duration, wave-action effects, water quality) and the vulnerability of receptors (type of development, nature, e.g. age-structure, of the population, presence and reliability of mitigation measures etc.). Flood risk is then expressed in terms of the following relationship:

Flood risk = Probability of flooding x Consequences of flooding

4.3 Risk

Flood risk is not static; it cannot be described simply as a fixed water level that will occur if a river overtops its banks or from a high spring tide that coincides with a storm surge. It is therefore important to consider the continuum of risk carefully. Risk varies depending on the severity of the event, the source of the water, the pathways of flooding (such as the condition of flood defences) and the vulnerability of receptors as mentioned above.

4.3.1 Actual risk

This is the risk 'as is' taking into account any flood defences that are in place for extreme flood events (typically these provide a minimum Standard of Protection (SoP)). Hence, if a settlement lies behind a fluvial flood defence that provides a 1 in 100-year SoP then the actual risk of flooding from the river in a 1 in 100-year event is generally low. However, the residual risk may be high in that the impact of flood defence failure would likely have a major impact.

Actual risk describes the primary, or prime, risk from a known and understood source managed to a known SoP. However, it is important to recognise that risk comes from many different sources and that the SoP provided will vary within a river catchment. Hence, the actual risk of flooding from the river may be low to a settlement behind the defence but moderate from surface water, which may pond behind the defence in low spots and is unable to discharge into the river during high water levels.

4.3.2 Residual risk

Defended areas, protected by flood defence infrastructure, remain at residual risk as there is a risk of overtopping or defence breach during significant flood events. Whilst the potential risk of failure may be reduced, consideration of inundation and the impact on development needs to be considered.

Examples of residual flood risk include:

- The failure of flood management infrastructure such as a breach of a raised flood defence, blockage of a surface water conveyance system, overtopping of an upstream storage area, or failure of a pumped drainage system,
- Failure of a reservoir, or
- A severe flood event that exceeds a flood management design standard, such
 as a flood that overtops a raised flood defence, or an intense rainfall event
 which the drainage system cannot cope with.

Even when flood defences are in place, there is always a likelihood that these could be overtopped in an extreme event or that they could fail or breach. Where there is a consequence to that occurrence, this risk is known as residual risk. Defence failure can lead to rapid inundation of fast flowing and deep floodwaters, with significant consequences to people, property and the local environment behind the defence. Whilst the actual risk of flooding to a settlement that lies behind a fluvial flood defence that provides a 1 in 100-year SoP may be low, there will always be a residual risk from flooding if these defences overtopped or failed that must be taken into account. Because of this, it is never appropriate to use the term "flood free".

TAN 15 (Appendix A1.17) states that, when assessing flood consequences, an assessment of the residual risks after the construction of any necessary defences should be carried out. Consideration should always be given to the behaviour of any new or modified defences in extreme events greater than those for which they are designed, and information should be provided on the consideration given to minimising risks to life in such circumstances.

Modelling of residual risk has been carried out through this SFCA. Defence breach scenario modelling has been carried out at targeted locations on the tidal Dee. Also, culvert blockage scenario modelling has been assessed on Broughton Brook in Hawarden. See Section 7.3 for details.

4.4 Fluvial and tidal flooding

Fluvial flooding is associated with the exceedance of channel capacity during higher flows. The process of flooding from watercourses depends on a number of characteristics associated with the catchment including geographical location and variation in rainfall; steepness of the channel and surrounding floodplain; and infiltration and rate of runoff associated with urban and rural catchments.

Tidal flooding is caused by storm surge and wave action in times of high astronomical tides. Such conditions can lead to the overtopping or breaching of coastal flood defences. The probability of a breach is dependent on four main factors: weather conditions (generating large waves); wind direction (on-shore); high tides (particularly during spring tides) and the condition of the coastal defences. When these conditions combine the risk of flooding can be greatly enhanced as the predicted tide level can be raised by several metres.

This SFCA includes the modelling of coastal defence breach scenarios in six targeted locations, namely, Pentre, Saltney (Mold Junction Drain), Bumper Lane (Waters Mett), Hawarden Business Park (Beeches), Queensferry and Broken Bank. The outputs of the breach modelling are shown on the SFCA Maps in Appendix A and more information is available in Section 7.3.1.

4.4.1 Main River

NRW decides which watercourses are Main Rivers. It consults with other risk management authorities and the public before making these decisions.

NRW describes Main Rivers as usually being larger rivers and streams with other rivers known as ordinary watercourses. NRW carries out maintenance, improvement or construction work on Main Rivers to manage flood risk and will carry out flood defence work to Main Rivers only.

4.4.2 Ordinary watercourses

Ordinary watercourses are any watercourse not designated as Main River. These watercourses can vary in size considerably and can include rivers and streams and all ditches, drains, cuts, culverts, dikes, sluices, sewers (other than public sewers within the meaning of the Water Industry Act 1991) and passages, through which water flows.

LLFAs, district councils and internal drainage boards carry out flood risk management work on ordinary watercourses.

4.4.3 Flood Zone 3 and Flood Zone 2

The flood zones are used by NRW to raise awareness of flood risk with the public, flood risk management partners and for strategic planning purposes for predicting the location and extent of fluvial (from Main River) and tidal flooding. The flood zones are available nationally and represent a precautionary, worst-case scenario of flooding in that they do not take account of flood defence infrastructure (which can be breached, overtopped or may not be in existence for the lifetime of development).

Note, the flood zones in Flintshire have not changed since the Deposit Plan SFCA in 2018.

Flood Zone 3:

- The extent of a flood from rivers with a 1% (1 in 100) chance or greater of happening in any given year,
- The extent of a flood from the sea with a 0.5% (1 in 200) chance or greater of happening in any given year.

Flood Zone 2:

- The extent of a flood from rivers or from the sea with up to a 0.1% (1 in 1000) chance of happening in any given year,
- Contains areas recorded to have flooded in the past,
- Forms the basis of Zone C in Welsh Government's DAM and is therefore important in a planning context.

The flood zones are shown on the SFCA Maps in Appendix A.

4.5 Surface water flooding

Surface water flooding, in the context of this SFCA, includes:

- Surface water runoff (also known as pluvial flooding); and
- Sewer flooding

There are certain locations, generally within urban areas, where the probability and consequence of pluvial and sewer flooding are more prominent due to the complex hydraulic interactions that exist in the urban environment. Urban watercourse connectivity, sewer capacity, and the location and condition of highway gullies all have a major role to play in surface water flood risk.

It should be acknowledged that once an area is flooded during a large rainfall event, it is often difficult to identify the route, cause and ultimately the source of flooding without undertaking further site-specific and detailed investigations.

4.5.1 Pluvial flooding

Pluvial flooding of land from surface water runoff is usually caused by intense rainfall that may only last a few hours. In these instances, the volume of water from rural land can exceed infiltration rates in a short amount of time, resulting in the flow of water over land. Within urban areas, this intensity can be too great for the urban drainage network resulting in excess water flowing along roads, through properties and ponding in natural depressions. Areas at risk of pluvial flooding can, therefore, lie outside of the fluvial or tidal flood zones.

Pluvial flooding within urban areas across the country will typically be associated with events greater than the 1 in 30 AEP design standard of new sewer systems. Some older sewer and highway drainage networks will have a lower capacity than what is required to mitigate for the 1 in 30 AEP event. There is also a residual risk associated with these networks due to possible network failures, blockages or collapses.

Risk of Flooding from Surface Water, 2013

The Risk of Flooding from Surface Water (RoFSW) dataset (produced in 2013), formally referred to as the updated Flood Map for Surface Water (uFMfSW), is the third generation national surface water flood map, produced by NRW, aimed at helping to identify areas where localised, flash flooding can cause problems even if the Main Rivers are not overflowing. The RoFSW, used in this SFCA to assess risk from surface water, has proved extremely useful in supplementing the DAM by identifying areas in Zone A, which may have critical drainage problems.

The RoFSW includes surface water flood outlines, depths, velocities and hazards for the following events:

- 3.33% or 1 in 30 AEP event (high risk)
- 1% or 1 in 100 AEP event (medium risk)
- 0.1% or 1 in 1000 AEP event (low risk)

The National Modelling and Mapping Method Statement, May 2013 details the methodology applied in producing the map. The RoFSW map is displayed on the SFCA Maps.

4.5.2 Sewer flooding

Combined sewers spread extensively across urban areas serving residential homes, business and highways, conveying waste and surface water to treatment works. Combined Sewer Overflows (CSOs), provide an NRW consented overflow release from the drainage system into local watercourses or large surface water systems during times of high flows. Some areas may also be served by separate waste and surface water sewers which convey wastewater to treatment works and surface water into local watercourses.

Flooding from the sewer network mainly occurs when flow entering the system, such as an urban storm water drainage system, exceeds its available discharge capacity, the system becomes blocked or it cannot discharge due to a high water level in the receiving watercourse. Pinch points and failures within the drainage network may also restrict flows. Water then begins to back up through the sewers and surcharge through manholes, potentially flooding highways and properties. It must be noted that sewer flooding in 'dry weather' resulting from blockage, collapse or pumping station mechanical failure (for example), is the sole concern of the drainage undertaker.

Welsh Water (DCWW) is the wastewater and sewerage company responsible for the management of the majority of the drainage network across Flintshire. Dee Valley Water supplies water to some eastern parts of Flintshire. Water companies have a duty to prevent flooding occurring from their systems, including burst pipes, burst water mains or system failure.

4.5.3 Groundwater flooding

Groundwater flooding is caused by the emergence of water from beneath the ground, either at point or diffuse locations. The occurrence of groundwater flooding is usually local and unlike flooding from rivers and the sea, does not generally pose a significant risk to life due to the slow rate at which the water level rises. However, groundwater flooding can cause significant damage to property, especially in urban areas, and can pose further risks to the environment and ground stability.

There are several mechanisms that increase the risk of groundwater flooding including prolonged rainfall, high in-bank river levels, artificial structures, groundwater rebound and mine water rebound. Properties with basements or cellars or properties that are

located within areas deemed to be susceptible to groundwater flooding are at particular risk. Development within areas that are susceptible to groundwater flooding will generally not be suited to SuDS; however, this is dependent on detailed site investigation and risk assessment at the FCA stage.

JBA 5 m Groundwater Vulnerability Map

This SFCA uses groundwater data in the form of JBA's 5 m groundwater map, which provides a general broad scale assessment of the groundwater flood hazard. Groundwater levels were modelled for a range of return periods and were then compared to ground surface levels to determine the head difference in metres. The map is split into five different classes based on the difference head, as shown in Table 4-1. The groundwater map is shown on the SFCA maps.

Groundwater head difference (m)*	Grid Code	Class label
0 to 0.025	4	Groundwater levels are either at very near (within 0.025m of) the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to both surface and subsurface assets. Groundwater may emerge at significant rates and has the capacity to flow overland and/or pond within any topographic low spots.
0.025 to 0.5	3	Groundwater levels are between 0.025m and 0.5m below the ground surface in the 100-year return period flood event. Within this zone there is a risk of groundwater flooding to surface and subsurface assets. There is the possibility of groundwater emerging at the surface locally.
0.5 to 5	2	Groundwater levels are between 0.5m and 5m below the ground surface in the 100-year return period flood event. There is a risk of flooding to subsurface assets but surface manifestation of groundwater is unlikely.
>5	1	Groundwater levels are at least 5m below the ground surface in the 100-year return period flood event. Flooding from groundwater is not likely.
N/A	0	No risk. This zone is deemed as having a negligible risk from groundwater flooding due to the nature of the local geological deposits.

^{*}Difference is defined as ground surface in m AOD minus modelled groundwater table in m AOD.

Table 4-1: Groundwater flood hazard classification of JBA groundwater map

4.6 Canal and reservoir flood risk (residual risk)

4.6.1 Canals

The risk of flooding along a canal is considered residual and is dependent on a number of factors. As canals are manmade systems that are heavily controlled, it is unlikely they will respond in the same way as a natural watercourse during a storm event. Flooding is more likely to be associated with residual risks, similar to those associated with river defences, such as overtopping of canal banks, breaching of embanked

reaches or asset (gate) failure as highlighted in Table 4-2. Canals can also have a significant interaction with other sources, such as watercourses that feed them and minor watercourses or drains that cross underneath.

Potential Mechanism	Significant Factors
Leakage causing erosion and rupture	Embankments
of canal lining leading to breach	Sidelong ground
	Culverts
	Aqueduct approaches
Collapse of structures carrying the	Aqueducts
canal above natural ground level	Large diameter culverts
	Structural deterioration or accidental damage
Overtopping of canal banks	Low freeboard
	Waste weirs
Blockage or collapse of conduits	Culverts

Table 4-2: Canal flooding mechanisms

The risks associated with these events are also dependent on their potential failure location with the consequence of flooding higher where floodwater could cause the greatest harm due to the presence of local highways and adjacent property. The focus should be on areas adjacent to raised embankments. The pound length of the canal also increases the consequence of failure, as flows will only cease due to the natural exhaustion of supply. Stop plank¹² (log) arrangements, stop gates and the continued inspection and maintenance of such assets by the Canal & River Trust help to manage the overall risk of a flood event.

There are no major canalised watercourses in Flintshire.

4.6.2 Reservoirs

A reservoir can usually be described as an artificial lake where water is stored for use. Some reservoirs supply water for household and industrial use, others serve other purposes, for example, as fishing lakes or leisure facilities. Like canals, the risk of flooding associated with reservoirs is residual and is associated with failure of reservoir outfalls or breaching. This risk is reduced through regular maintenance by the operating authority. Reservoirs in the UK have an extremely good safety record with no incidents resulting in the loss of life since 1925.

NRW is the enforcement authority for the Reservoirs Act 1975, (amended by the Flood and Water Management Act 2010) in Wales. This law was further amended on 1 April 2016, introducing three important changes which dealt with the introduction of some reservoirs into regulation, some stated reservoirs seeing reduced regulation and any all incidents affecting reservoir safety needing to be reported to NRW. All large, raised reservoirs must be regularly inspected and supervised by reservoir panel engineers. Reservoir undertakers in Flintshire include NRW, DCWW and private undertakers. FCC is the undertaker for one reservoir, namely Flour Mill near Holywell.

The reservoir undertaker manages and controls the use of the reservoir and is responsible for maintaining compliance with the law. The undertaker is the person, people or company that uses a reservoir for a particular purpose. If there is no use, the owners or lessees are the undertakers. The operator may be different from the

¹² Wooden boards for dropping into grooves at a narrows; to permit drainage for maintenance work on a canal section or to isolate a leaking section
DCX-JBAU-XX-XX-RP-Z-0001-S3-P02-Draft_Report

NRW has produced online guidance for reservoir owners and operators which should be consulted regularly for any updates:

https://naturalresources.wales/ReservoirSafety?lang=en

Reservoir Flood Maps

The EA has produced reservoir flood maps (RFM) for all large reservoirs in England and Wales that are regulated under the Reservoirs Act 1975 (reservoirs that hold over 10,000 cubic meters of water). The FWMA updated the Reservoirs Act and targeted a reduction in the capacity at which reservoirs should be regulated from 25,000m³ to 10,000m³. As of the amendment to Reservoirs Act 1975 coming into force on 1 April 2016, 'new' reservoirs between 10,000m³ and 25,000m³ are to have RFM produced by the EA to inform risk designation and emergency planning. The maps were originally produced for Local Resilience Forums to use for emergency planning, however, The Pitt Review, 2007, recommended that the maps be made available to the public online as part of wider flood risk information.

The maps show the largest area that might be flooded if a reservoir were to fail and release the water it holds, including information about the depth and speed of the flood waters. In September 2016, the EA produced the RFM guide 'Explanatory Note on Reservoir Flood Maps for Local Resilience Forums – Version 5¹³¹ which provides information on how the maps were produced and what they contain.

The RFM outlines are not included on the SFCA Maps due to issues with data sensitivity, however they can be viewed online at:

https://maps.cyfoethnaturiolcymru.gov.uk/Html5Viewer/Index.html?configBase=https://maps.cyfoethnaturiolcymru.gov.uk/Geocortex/Essentials/REST/sites/Flood_Risk/viewers/Flood_Risk/virtualdirectory/Resources/Config/Default

There are five large reservoirs in Flintshire. The RFM shows the areas that would be affected in the unlikely event of a dam breach.

4.7 Flood risk datasets available

Table 4-3 provides a strategic overview of the key flood risk datasets used in this SFCA according to the source of flooding within Flintshire. The information contained is the best available at the time of publication and is intended to provide the Council with a strategic overview of risk.

Flood Source	Datasets
11000 000100	
Fluvial / tidal	Welsh Government Development Advice Maps (DAM)
	Flood Zones 2 and 3
	Flintshire LFRMS
	Dee FRMP and RBMP
	Tidal Dee flood defence breach modelling (Section Error! Reference source not found.); Broughton Brook culvert blockage modelling (Section 7.3.2)
	North West England and North Wales Shoreline Management Plan SMP2 (refer to Section 3.4.2 for further information)
Pluvial	NRW Surface Water Flood Risk Maps
(surface water runoff)	Flintshire PFRA
Sewer	Welsh Water Historical Flood Records (DG5 Register) and Infrastructure Capacity Data
	FCC LLFA historic sewer flooding database
Groundwater	JBA 5m Groundwater Vulnerability Map
Reservoir	NRW Reservoir Flood Maps (available online only)
All sources	Conwy and Clwyd, River Dee CFMPs
	Dee FRMP
	NRW Historic Flood Map and Recorded Flood Outlines
Flood risk	NRW flood defence dataset and Areas Benefitting from Defences
management infrastructure	NRW Flood Storage Areas
inirastructure	NRW detailed coastal defence data

Table 4-3: Flood source and key datasets

5 Historic Flooding in Flintshire

There are a number of datasets and sources of information that record incidents of historic flooding across Flintshire. Records of historic flood events help to build a picture of where flooding occurs most frequently. This can then help to direct flood risk management actions to those places that need them the most. A record of the flood source is also crucial to determining the kind of flood risk management actions that are appropriate.

As stated in Table 3-1, under the FWMA, the LLFA is required to investigate and record details of "locally significant" flood events within its area. This duty includes owning and maintaining a flood incident register which records such information as flood location, receptors, date and time, flood duration and flood source. FCC has not, at the time of writing, developed such a register. The LLFA has many paper records which are to be digitised into a GIS file in the future.

DCWW, as a UK Water and Sewerage Company, are obliged to record and report incidents of sewer flooding by the industry regulator, OFWAT. DCWW provided its flooding register for both internal (property) and external flooding incidents in 2018 for the Deposit Plan SFCA.

5.1 NRW Historic Flood Map

The Historic Flood Map (HFM) is a spatial dataset showing the maximum extent of all recorded historic flood outlines from river, sea and groundwater, and shows areas of land that have previously been flooded across Wales. Records began in 1946 when predecessor bodies to NRW started collecting information about flooding incidents.

The HFM accounts for the presence of defences, structures, and other infrastructure where such things existed at the time of flooding. It includes flood extents that may have been affected by overtopping, breaches or blockages. It is also possible that historic flood extents may have been changed and that some areas would not flood at present i.e. if a flood defence has since been built.

The absence of the HFM in an area does not mean that the area has never been flooded, only that records of historic flooding do not exist. The HFM is shown on the SFCA maps in Appendix A.

5.2 Historic tidal and fluvial flooding

There isn't much information available on previous tidal and fluvial flood events in Flintshire. As discussed, the LLFA is yet to fully establish its historic flood incident database. The PFRA and the Dee FRMP do not include specific references though the LFRMS discusses widespread flooding that occurred in 2000 to the communities of Mold, Flint, Rhydymwyn, Hendre, Pontblyddyn, and Bagillt.

The Dee FRMP does mention a tidal surge (a very high tide combined with stormy weather) that combined with a spring tide caused some localised flooding along the Dee estuary in December 2013.

The HFM shows there are 61 areas of historic flooding in Flintshire. The most significant areas are in the east of the County around Hawarden Airport, Sandycroft and Queensferry with the source coming from Main River. There is also a large swathe running through Mold due to flooding from the River Alyn and several ordinary watercourses. The River Alyn also caused widespread flooding to the village of Rhydymwyn in 2000. Only two of the 61 HFM incidents are attributable to flooding from the sea; these are of the railway line at Ffynnongroyw, due to operational failure and / or breach of the sea defence; and at Walwen where the sea defence was overtopped.

Commented [MW1]: Is this still the case?

5.3 Historic surface water flooding

As discussed, DCWW provided a copy of its flood incident register. The majority of locations on the register relate to properties, although some external locations may include large areas such as sections of highway, fields, car parks, etc. Given the property level detail in this dataset, it is not appropriate to show this data on the large scale SFCA Maps in Appendix A, rather it is shown in this report in Figure 5-1 on a smaller scale.

Figure 5-1 shows all recorded incidents of sewer flooding from DCWW's wastewater and sewerage network from 1990 to November 2016, accounting for 891 incidents. Of these incidents, 345 could be attributed to hydraulic overload of foul sewers; 256 to combined foul and surface water; 62 to surface water only; and 228 are from an unknown or unrecorded source.

It is noticeable that most incidents occur in the more built up areas around Queensferry and Connah's Quay (approximately 236 incidents); Mold (185); Holywell (120); Penyffordd (58); Flint (48); and 61 all foul incidents along the A548 road around the less populated area of Ffynnongroyw in the north of the County.

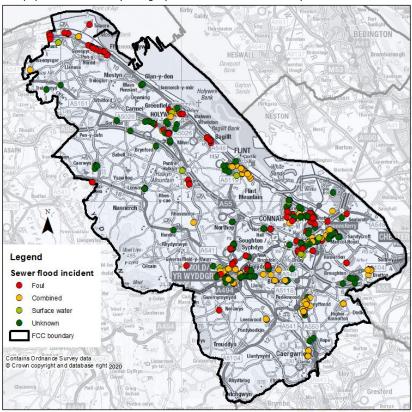


Figure 5-1: DCWW flood incident register

6 Flood Risk Management and Alleviation

6.1 Catchment Based Approach (CaBA)

The Catchment Based Approach embeds collaborative working at a river catchment scale to deliver cross cutting improvements to our water environments. The CaBA partnerships drive cost-effective practical delivery on the ground, resulting in multiple benefits including reduced flood risk and resilience to climate change.

Catchment partnerships are groups of organisations with an interest in improving the environment in the local area and are led by a catchment host organisation. The partnerships work on a wide range of issues, including the water environment but also address other concerns that are not directly related to river basin management planning. UK Government is also working to strengthen or establish partnerships in the areas most affected by the December 2015 floods to encourage a more integrated approach to managing risk across all catchments.

UK Government's aspirations for the next cycle of planning (now to 2021) is for more integrated catchment planning for water, where Flood and Coastal Risk Management, River Basin Management, nature conservation and land management are considered together.

Catchment partnerships relevant to Flintshire include:

- Tidal Dee Catchment Partnership, hosted by the Welsh Dee Trust and Cheshire Wildlife Trust
- The Middle Dee Partnership, hosted by the Welsh Dee Trust and Cheshire Wildlife Trust

6.2 Natural Flood Management and Working with Natural Processes – what is it?

Natural Flood Management (NFM) or Working with Natural Processes (WwNP) is a type of flood risk management used to protect, restore and renaturalise the function of catchments and rivers to reduce flood and coastal erosion risk. WwNP has the potential to provide environmentally sensitive approaches to minimising flood risk, to reduce flood risk in areas where hard flood defences are not feasible and to increase the lifespan of existing flood defences. NFM and WwNP are used interchangeably in the UK though the term WwNP used throughout this report.

A wide range of techniques can be used that aim to reduce flooding by working with natural features and processes in order to store or slow down flood waters before they can damage flood risk receptors (e.g. people, property, infrastructure, etc.). WwNP involves taking action to manage flood and coastal erosion risk by protecting, restoring and emulating the natural regulating functions of catchments, rivers, floodplains and coasts. Techniques and measures, that may be applicable to Flintshire, include:

- · Peatland and moorland restoration in upland catchments
- Re-meandering streams
- Targeted woodland planting
- Reconnection and restoration of functional floodplains
- Restoration of rivers and removal of redundant structures
- Installation or retainment of large woody material in river channels
- Improvements in management of soil and land use
- · Creation of rural and urban SuDS
- Restoration and management of sand dunes, saltmarshes and mudflats on the coast
- Managed realignment of the coastline
- Beach nourishment

44

Both the European Commission and UK Government are actively encouraging the implementation of WwNP measures within catchments and coastal areas in order to assist in the delivery of the requirements of various EC Directives relating to broader environmental protection and national policies. It is fully expected that the sustained interest in WwNP implementation across the UK will continue in the post-Brexit era as a fundamental component of the flood risk management tool kit.

6.2.1 **WwNP** in Flintshire

The Flintshire LFRMS discusses WwNP in the context of Flood and Coastal Erosion Risk Management whereby WwNP means slowing down the flow of water (e.g. by reestablishing floodplains that hold floodwaters) or speeding up the flow of water (e.g. by removing unnatural obstructions), to prevent floodwaters from causing harm. Such techniques protect, restore or emulate natural processes which regulate flooding and erosion. Natural processes operate across a continuum from mitigated engineering to full naturalisation.

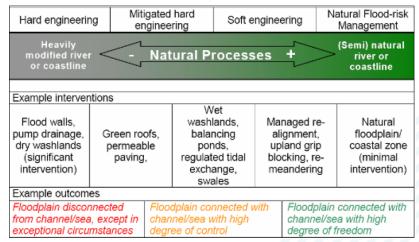


Figure 6-1: NRW's conceptual model of WwNP¹⁴

The LFRMS includes an example, from 2003, at Talacre on the northern coastline whereby certain low spots in the natural coastal dune system were raised using sand dredged locally from the River Dee. The raised areas were then reinforced by planting locally sourced Marram Grass. The raising of the dunes provides protection to the village of Talacre from possible tidal surge events.

NRW Maps of Natural Flood Management¹⁵

Natural flood management is a means of working with natural processes by implementing nature-based interventions to help reduce the risk of flooding. The maps to help identify potential areas for working with natural processes to reduce fluvial flood risk have been developed as part of the research project 'Working with Natural Processes – the evidence base'. This joint project was delivered under the Flood and Coastal Erosion Risk Management Research and Development programme managed by the Environment Agency.

¹⁴ Flintshire Local Flood Risk Management Strategy, Strategy Document 2013 - 2017, December 2013, Flintshire

 $[\]label{lem:county} Council $15 http://naturalresources.wales/flooding/managing-flood-risk/maps-for-natural-flood-management/?lang=en DCX-JBAU-XX-XX-RP-Z-0001-S3-P02-Draft_Report$

The maps identify potential areas for the following measures:

- floodplain reconnection
- · run-off attenuation features and gully blocking
- woodland planting covering floodplain planting, riparian planting and wider catchment woodland

It is recommended that the maps are used alongside the Working with Natural Processes Evidence Directory to help users think about the types of measures that could be used and where they may be most effective within a catchment.

The maps do not cover all measures for working with natural processes and users may wish to refer to other sources of relevant information when identifying areas of opportunity.

A technical guide containing further technical background on the maps as well as additional information on Working with Natural Processes as part of the same study is also publicly available 16 .

6.3 Green Infrastructure assessments

Open space, or Green Infrastructure (GI), should be designed and managed as a multifunctional resource capable of delivering a wide range of environmental and quality of life benefits for local communities and should be provided as an integral part of all new development, alongside other infrastructure such as utilities and transport networks.

Open space can provide many social, economic and environmental benefits close to where people live and work including:

- Places for outdoor relaxation and play;
- Space and habitat for wildlife with access to nature for people;
- Environmental education;
- Local food production in allotments, gardens and through agriculture;
- Improved health and well-being lowering stress levels and providing opportunities for exercise;
- Climate change adaptation for example flood alleviation and cooling urban heat islands.

Open space can perform many functions, including flood risk mitigation. LDPs should account for increased flood risk, resulting from climate change, through the planning of GI. GI can have an important role to play in reducing the likelihood of flooding by providing space for flood storage, reducing runoff and increasing infiltration, whilst also providing other benefits as stated above.

Alongside GI should be the implementation of SuDS (see Section 7.6.5), specifically within potential development sites, where possible. The suitability of GI and SuDS can be informed by this SFCA through utilisation of open space for water in the areas of greatest flood risk, which would be key to helping deliver sustainable development.

Examples include:

- · Restoration of the natural character of floodplains;
- Keeping and preserving of areas of existing natural floodplain;
- Introduction of new areas and enhancing existing areas of greenspace whilst incorporating sustainable drainage within new development; and

¹fhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/677592/Working_with_natural_processes_mapping_technical_report.pdf

Reduction of downstream flood risk.

FCC produced a strategy for green $space^{17}$ in 2013, however, it does not include any reference to flood risk mitigation. FCC may consider reviewing this Strategy to factor in options for flood risk management based on the outputs of this SFCA. This could also be linked in to certain WwNP measures discussed in Section 6.2.

6.4 NRW flood risk management assets

NRW maintains a spatial dataset called the Spatial Flood Defences dataset. This national dataset contains such information as:

- Asset type (flood wall, embankment, high ground, dunes, demountable defence):
- Flood source (fluvial, tidal, fluvial and tidal);
- Design standard (SoP);
- Asset length;
- Asset age;
- Asset location; and
- Asset condition. See for condition assessment grades using the Environment Agency's (EA) Condition Assessment Manual¹⁸ (CAM).

Grade	Rating	Description
1	Very Good	Cosmetic defects that will have no impact on performance
2	Good	Minor defects that will not reduce the overall performance of the asset
3	Fair	Defects that could reduce the performance of the asset
4	Poor	Defects that would significantly reduce the performance of the asset. Further investigation needed.
6	Very Poor	Severe defects resulting in complete performance failure.

Figure 6-2: EA flood defence condition assessment grades

In total, there are 77 manmade raised flood defences in Flintshire, 56 of which are embankments and 21 which are walls. Of the 77 assets, 16 are coastal i.e. offering protection from tidal flooding; 32 for fluvial flooding; and 29 from combined fluvial and tidal flooding. The combined fluvial and tidal defences are all located along the Dee estuary from Rockcliffe to Chester and the coastal defences are all located from Talacre to Flint. The majority of fluvial defences are located along the River Alyn protecting the golf course east of Mold and areas to the north of Mold. There is also a wall in Rhydymwyn on the bend of the Nant Gain watercourse. The Catchwater Drain, to the east of Higher Kinnerton is embanked on both banks, protecting what appears to be agricultural land.

One of the coastal defences at Walwen and Whelston; a number of defences along the Dee estuary; and several of the River Alyn defences are recorded to be in poor condition and should therefore be further investigated with a few to carrying out remedial works

¹⁷ A Green Space Framework Strategy for Flintshire, Flintshire County Council, February 2013
18 Environment Agency. (2012). Visual Inspection Condition Grades. In: EA Condition Assessment Manual. Bristol: Environment Agency. p9.

or asset replacement. The NRW assets are shown on the SFCA Maps in, Appendix A, colour coded by their condition assessments as per gradings shown in Figure 6-2.

6.5 LLFA flood risk management assets

The LLFA own and maintain a number of assets throughout Flintshire which will include culverts, bridge structures, gullies, weirs and trash screens. The majority of these assets will lie along ordinary watercourses within smaller built-up areas where watercourses may have been culverted or diverted, or within rural areas. All these assets can have flood risk management functions as well as an effect on flood risk if they become blocked or fail. In most cases responsibility lies with the riparian landowner.

As part of its FWMA duties, the LLFA has a duty to maintain a register of structures or features, which are considered to have a significant effect on flood risk, including details on ownership and condition as a minimum. The Asset Register should include those features relevant to flood risk management function including feature type, description of principal materials, location, measurements (height, length, width, diameter) and condition grade. The Act places no duty on the LLFA to maintain any third-party features, only those for which the authority has responsibility as land/asset owner.

The Flintshire LFRMS published in December 2013, states that the Council has begun to populate a register of all existing information on structures that are likely to have a significant effect on flood risk. However, FCC believes it will take many years before the register is sufficiently comprehensive to be of real value in flood risk management. Based on that information, the LLFA has not provided information on its asset register for this SFCA.

The LLFA should carry out a strategic assessment of structures and features on the FRM Asset Register to inform capital programme and prioritise maintenance programme. Critical assets (i.e. culverts in poor condition) should be prioritised for designated works.

6.6 Water company assets

The sewerage infrastructure across Flintshire is likely to be based on Victorian sewers from which there is a risk of localised flooding associated with the existing drainage capacity and sewer system. The drainage system may be under capacity and / or subject to blockages resulting in localised flooding of roads and / or property. DCWW is responsible for the management of the adopted sewerage system. This includes surface water and foul sewerage.

There may however be some private surface water sewers in the county as only those connected to the public sewer network that were transferred to the water companies under the Private Sewer Transfer in 2011 are likely to have been constructed since this transfer date. Surface water sewers discharging to watercourses were not part of this transfer and would therefore not be under the ownership of DCWW, unless adopted under a Section 104 adoption agreement.

Water company assets include Wastewater Treatment Works, Combined Sewer Overflows, pumping stations, detention tanks, sewer networks and manholes. Dee Valley Water will also own various water mains and piped infrastructure in its area.

6.7 NRW Flood Risk Management Activities and Flood and Coastal Erosion Risk Management Research and Development

As well as the ownership and maintenance of a network of formal defence structures, NRW carries out a number of other flood risk management activities that help to reduce the probability of flooding, whilst also addressing the consequences of flooding. These include:

 Maintaining and improving existing flood defences, structures and Main River channels.

- Enforcement and maintenance where riparian owners unknowingly carry out work that may be detrimental to flood risk.
- Identifying and promoting new flood alleviation schemes (FAS) where appropriate.
- Working with local authorities to influence the location, layout and design of new and redeveloped property and ensuring that only appropriate development is permitted relative to the scale of flood risk, i.e. through this SFCA.
- Operation of flood warnings and flood alerts for areas within designated Flood Warning Areas (FWA) or Flood Alert Areas (FAA). FWAs are shown on the SFCA Maps in Appendix A.
- Promoting awareness of flooding so that organisations, communities and individuals are aware of the risk and are therefore sufficiently prepared in the event of flooding.
- Promoting resilience and resistance measures for existing properties that are currently at flood risk or may be in the future as a result of climate change.
- The Flood and Coastal Erosion Risk Management (FCERM) Research and Development programme is run by NRW in collaboration with Welsh Government, the EA and Defra and aims to serve the needs of all flood and coastal operating authorities in England and Wales. The programme provides the key evidence, information, tools and techniques to:
 - Inform the development of FCERM policy and strategy,
 - Understand and assess coastal and flood risks and the processes by which these risks arise,
 - Manage flood and coastal erosion assets in a sustainable way,
 - Prepare for and manage flood events effectively.
- Based on information publicly available from NRW, there are a number of completed, ongoing and proposed national flood risk management work programmes. Follow the link below for the latest news where there may be programmes relevant to Flintshire:

https://natural resources.wales/evidence-and-data/research-and-reports/reports-evidence-and-data-on-flooding/flood-and-coastal-erosion-risk-management-research/?lang=en

7 Development and flood risk

7.1 Introduction

This section of the SFCA provides a strategic assessment of the suitability, relative to flood risk, of sites in Flintshire to help inform the development of the new LDP.

The information and guidance provided in this chapter (supported by the SFCA mapping in Appendix A and Development Site Assessment Spreadsheet in Appendix B) can be used by FCC to inform their new LDP, and provide the basis from which to apply the Justification and Acceptability Tests in sections 6 and 7 of TAN 15 (see Section 3.3 of this report). Surface water risk is also reviewed and recommendations are made as per Section 8 and Appendix 4 of TAN 15 concerning surface water management and Surps

Detailed modelled climate change outputs are not available for this study, and therefore a cautious approach to assessing future risk to existing settlements and sites at risk has been adopted. It can be often the case that modelled 1 in 1000 year AEP event outlines are similar to modelled climate change scenarios for the 1 in 100 year AEP event.

The tidal Dee defence breach modelling however has taken account of climate change. See Section **Error! Reference source not found.** for details on the breach modelling and the LDP sites affected.

The LPA provided a GIS layer of possible development sites with potential to be included as site allocations in the new LDP. 81 potential sites were provided in 2017 to be assessed through the Deposit Plan SFCA, entailing the proposed uses listed in Table 7-1. Table 7-1 also shows the associated vulnerability of each proposed use that is used to help assign the strategic recommendations discussed in Section 7.2. A further 11 LDP employment allocations (Policy PE1) and 30 Principle Employment Area sites (Policy PE2) have been provided for assessment through this SFCA update.

Proposed site use	Flood risk vulnerability (Figure 2 of TAN 15)
Housing	Highly vulnerable
Employment	Less vulnerable
Mixed Use	Highly vulnerable
Community Facility	Highly vulnerable
School	Highly vulnerable

Table 7-1: Proposed site uses and flood risk vulnerability

7.2 Screening of potential development sites

This assessment provides key information required for TAN 15 regarding the suitability of land for development and application of local evidence.

The tolerance condition assessment uses thresholds from Table A1.15 of TAN 15 which is described as not being prescriptive and is only indicative guidance. Therefore, the numbers provided in the tolerance condition assessment tables are estimated from a representative area of the site under assessment.

The Development Site Assessment spreadsheet, in Appendix B, provides a detailed breakdown of each potential development site showing the area, in hectares, and percentage coverage of each of the TAN 15 DAM zones, Flood Zones 2 and 3 and the surface water flood zones taken from the RoFSW dataset.

Furthermore, Appendix C displays the risk of flooding from the modelled defence breaches and the present-day flood depths, which should be assessed against the tolerable depths criteria of Table A1.15 of TAN 15.

FCC should use the Development Site Assessment spreadsheets in Appendix B and C to identify whether more detailed site-specific FCA's are required for the Justification and Acceptability Test. FCC can use the sites assessment to assess wider strategic objectives, against regeneration in areas already at risk of flooding, and the compatibility of vulnerability classifications and Flood Zones (refer to TAN 15) for the new LDP.

Potential Development Site		Number of sites within					
	*DAM A	DAM B	DAM C1	DAM C2	Flood Zone 2	Flood Zone 3	
Housing	65	5	6	3	7	9	
Employment	7	21	25	19	23	27	
Mixed Use	2	0	0	0	0	0	
School	0	1	1	0	1	1	
Community Facility	1	0	0	0	0	0	
TOTAL	75	27	32	22	31	37	

^{*}Sites with 100% area within DAM Zone A

Table 7-2 shows the number of sites within each fluvial and / or tidal flood zone with Table 7-3 showing the number of sites within each surface water flood zone.

Potential	Number of sites within					
Development Site	Low Risk (1 in 1000)	Medium Risk (1 in 100)	High Risk (1 in 30)			
Housing	64	50	35			
Employment	42	41	36			
Mixed use	2	2	2			
School	1	1	0			
Community facility	1	1	1			
TOTAL	110	95	74			

Potential Development Site			Numbe	r of sites w	ithin	
	*DAM A	DAM B	DAM C1	DAM C2	Flood Zone 2	Flood Zone 3
Housing	65	5	6	3	7	9
Employment	7	21	25	19	23	27
Mixed Use	2	0	0	0	0	0
School	0	1	1	0	1	1
Community Facility	1	0	0	0	0	0
TOTAL	75	27	32	22	31	37

Table 7-2: Number of potential development sites at risk from fluvial / tidal flooding

*Sites with 100% area within DAM Zone A

Table 7-3: Number of potential development sites at risk from surface water flooding

The spreadsheet also includes high level broad-brush strategic the viability of development for each site. The strategic recommendations are to assist the LPA in making decisions on how to progress each site.

Table 7-4 shows the number of sites each strategic recommendation applies to. Strategic recommendations:

Strategic Recommendation A – further evidencing, investigation or avoidance
of risk. In order for these sites to be developed, further evidence on flood risk
is required due to significant levels of fluvial, tidal or surface water flood risk.
Careful consideration of site layout and design around the identified flood risk,
avoiding flood risk zones if possible

Potential	Number of sites within					
Development Site	Low Risk (1 in 1000)	Medium Risk (1 in 100)	High Risk (1 in 30)			
Housing	64	50	35			
Employment	42	41	36			
Mixed use	2	2	2			
School	1	1	0			
Community facility	1	1	1			
TOTAL	110	95	74			

- Strategic Recommendation B minimum requirements. Site-specific FCA required to address nominal risk, and
- Strategic Recommendation C site permitted on flood risk grounds due to little perceived risk, subject to consultation with the LPA / LLFA.

Proposed use of site	sed use of site Strategic Recommendation					
	Α	В	С			
Housing	14	58	3			
Employment	33	10	0			
Mixed Use	0	2	0			
School	1	0	0			
Community Facility	1	0	0			
Total	49	70	3			

It is important to note that this SFCA does not assess each individual site in detail. Each individual site will require further investigation, as local circumstances may dictate the outcome of the strategic recommendation. The strategic recommendation may therefore change upon further investigation.

Such local circumstances may include the following:

- Flood depths and hazards will differ locally to each at risk site therefore
 modelled depth, hazard and velocity data should be assessed for the relevant
 flood events, including climate change (using Welsh Government's Climate
 Change guidance), through a detailed site-specific FCA.
- Current surface water drainage infrastructure and applicability of SuDS techniques are likely to differ at each site considered to be at risk from surface water flooding. Further investigation would therefore be required for any site at surface water flood risk.
- If there are sites which have planning permission, but construction has not started, the SFCA will only be able to influence the design of the development e.g. finished floor levels. New, more robust flood extents (from new models) cannot be used to reject development where planning permission has already been granted.
- It may be possible at some sites to develop around the flood risk. Planners are best placed to make this judgement i.e. will the site still be deliverable if part of it needs to be retained to make space for flood water.
- Surrounding infrastructure and land use may influence scope for layout redesign / removal of site footprints from risk.
- Current land use: A number of sites included in the assessment are likely to be brownfield, thus the existing development structure could be taken into account as further development may not lead to increased flood risk.
- Existing planning permissions may exist on some sites where the NRW may already have passed comment and/or agreed to appropriate remedial works concerning flood risk. Previous flood risk investigations/FCAs may already have been carried out at some sites.
- Cumulative effects. New development may result in increased risk to other potential or existing sites which could be assessed through a more detailed FCA.

The strategic recommendations are provided as a guide, based on the fluvial, tidal and surface water flood risk information made available for this SFCA at the time of the assessment.

Information regarding local, site-specific information is beyond the scope of this SFCA. It is FCC's responsibility to carry out justification testing of each site using the information provided in this SFCA and more specifically using their local, site-specific knowledge and advice from NRW.

The strategic recommendations and Development Site Assessment spreadsheets in Appendix B and C, should together assist the LPA in carrying out the Justification and Acceptability Tests, where applicable, for each site as part of the LDP Review.

The following sections summarise the strategic recommendations from the Development Site Assessment spreadsheet.

7.2.1 Strategic Recommendation A – further evidencing, investigation or avoidance of flood risk zones

Strategic Recommendation A applies to any site where the following criteria is true:

- Any area of any site type is within high risk Zone C2
 Any area of any site type is within Zone C1
 Any area of any site type is within high risk Flood Zone 3

Strategic Recommendation A applies to 48 sites, shown in Table 7-5 due to significant fluvial / tidal flood risk and Table 7-6 due to significant surface water risk only.

Site ID	Site name	Proposed use	Site area (ha)	DAM C1 (%)	DAM C2 (%)	Flood zone 3 (%)
BAG01 4	former Canton Depot, Pen y Maes Rd, Bagillt	Housing	1.11	69.71	0.00	63.78
FFY004	Land between A548, Main Road and Fairfield Avenue, Ffynnongroyw	Housing	0.52	100.00	0.00	99.96
FFY00 6	Land adjacent Elsinore, Fairfield Avenue, Ffynnongroyw	Housing	0.93	100.00	0.00	100.00
FFY00 7	Land to the west of Fairfield Avenue, Ffynnongroyw	Housing	1.27	97.27	0.00	94.94
FLI007	Land at Northop Road, Flint	Housing	9.38	0.00	3.86	3.05
MANOO 1	Land between Mancot Lane and Mancot Way, Mancot	Housing	1.55	52.22	0.00	37.96
MAN00 6	Land adj Mancot Way / Foxes Close, Mancot	Housing	0.93	79.80	0.00	61.40
MOL01 9	Penybont Farm, Chester Road, Mold	Employment	13.50	0.00	27.91	8.63
MOL04 4	Land opposite Pool House, Denbigh Road, Mold	Housing	3.94	0.00	28.46	28.46
NH020	Land south of Wellfield Farm, Village Road, Northop Hall	Housing	5.97	0.00	7.35	6.08
3	Hawarden Industrial Park	Employment	32.47	41.18	0.80	14.13
1	Land at Saltney	School	40.20	99.38	0.00	99.24
PE1.1	Manor Lane, Chester Aerospace Park	Employment	5.73	99.66	0.00	0.00
PE1.2	Manor Lane, Hawarden Park Extension	Employment	17.82	0.51	9.62	9.17

Site ID	Site name	Proposed use	Site area (ha)	DAM C1 (%)	DAM C2 (%)	Flood zone 3 (%)
PE1.4	Greenfield Business Park Phase II	Employment	0.97	100.00	0.00	97.70
PE1.5	Greenfield Business Park Phase III	Employment	4.42	99.96	0.00	99.93
PE1.6	Broncoed Industrial Estate	Employment	0.70	0.00	14.41	0.00
PE1.8	Adjacent Mostyn Docks	Employment	3.12	56.38	0.67	36.45
PE1.10	Antelope Industrial Estate	Employment	1.18	0.00	100.00	4.53
PE1.12	Rowley's Drive	Employment	0.81	100.00	0.00	100.00
PE2.3	Manor Industrial Estate	Employment	12.15	82.86	0.00	0.00
PE2.4	Broughton Mills	Employment	8.31	100.00	0.00	2.89
PE2.9	Evans Business Centre	Employment	7.85	100.00	0.00	100.00
PE2.10	Dock Road	Employment	14.08	52.90	1.58	24.48
PE2.11	Deeside Industrial Park and DARA	Employment	766.65	56.07	1.73	55.18
PE2.13	Ashmount Industrial Estate	Employment	24.10	1.79	0.52	1.81
PE2.14	Castle Park/Ashmount Industrial Centre	Employment	13.67	43.20	0.18	15.60
PE2.15	Greenfield Business Park	Employment	36.34	99.03	0.23	99.01
PE2.16	Hawarden Industrial Park, Chester Aerospace Park and Hawarden Airport	Employment	369.55	88.23	0.57	59.33
PE2.17	Broncoed Industrial Estate	Employment	3.93	0.00	61.73	0.00
PE2.18	Mold Business Park	Employment	2.88	0.00	0.19	0.00
PE2.19	Mold Industrial Estate	Employment	16.28	0.00	32.94	28.62
PE2.20	Mostyn Docks	Employment	28.57	31.32	22.55	11.19
PE2.21	Pentre Industrial Estate	Employment	15.78	100.00	0.00	100.00
PE2.22	Queensferry Industrial Estate	Employment	36.47	100.00	0.00	100.00
PE2.23	Expressway Business Park	Employment	2.02	100.00	0.00	100.00
PE2.24	Antelope Industrial Park	Employment	5.06	0.00	100.00	1.06
PE2.26	The Borders Industrial Park, Chesterbank Industrial Park and Brymau Four Estate	Employment	12.28	23.24	0.00	10.17
PE2.27	Engineer Park and St Ives Park	Employment	26.01	99.62	0.38	100.00
PE2.28	Glendale Business Park	Employment	13.85	100.00	0.00	100.00
PE2.29	Sandycroft Industrial	Employment	32.60	98.87	1.13	100.00

Site ID	Site name	Proposed use	Site area (ha)	DAM C1 (%)	DAM C2 (%)	Flood zone 3 (%)
	Estate					
PE2.30	Rowley's Drive	Employment	5.00	100.00	0.00	100.00

Table 7-5: Sites requiring further evidencing based on significant fluvial / tidal flood risk

Site ID	Site name	Proposed use	Site area (ha)	Medium risk (%)	High risk (%)
COE005	Former Canton Depot, Pen y Maes Rd, Bagillt	Housing	1.11	20.13	11.71
EWL013	Former Clwyd Alloys Works, Corwen Road, Coed Talon	Housing	2.28	3.64	19.63
EWL018	Wood Lane, Hawarden	Housing	0.89	9.99	15.81
GRO003	Wood Lane, Ewloe	Community Facility	0.24	9.24	29.03
NEW013	Land between A548, Main Road and Fairfield Avenue, Ffynnongroyw	Housing	0.52	42.24	0.00
NOR033	Land adjacent Elsinore, Fairfield Avenue, Ffynnongroyw	Housing	0.93	94.46	2.30
PE1.3	Drury New Road	Employment	1.54	10.89	9.44

Table 7-6: Sites wholly in Flood Zone 1 requiring further evidencing based on significant surface water risk

Of the 48 sites requiring further evidencing work, 42 are due to significant fluvial / tidal flood risk. Nine of these sites are proposed for housing and one a school. These sites all fall within the highly vulnerable category. Site MOL044 has over a quarter of its area within Zone C2 where TAN 15 states that allocations should not be made, and planning applications not proposed for highly vulnerable development. Site MOL001 is 38% within high risk Flood Zone 3. These sites could only be allocated if these areas could be removed from the site footprints, be left as open space to flood naturally, or if compensatory storage could be found. Further evidence gathering may also show flood depths to be shallow and hazards low, therefore increasing the viability of sustainable development.

Sites 1, FFY004, FFY006, FFY007 will be particularly challenging to develop and would ideally be left as open space given that virtually the whole of these sites are within Flood Zone 3 and Zone C1.

32 employment sites (two being LDF employment allocations and 30 Principal Employment Areas not assessed in the Deposit Plan SFCA) will require further evidence work, due to the considerable areas shown to be at fluvial and / or tidal risk within DAM Zone C2 and /or within Flood Zone 3. Given the less vulnerable category of employment uses, the LPA may consider it appropriate to carry out more detailed assessment of these sites through site-specific FCAs where justification in accordance with Section 6 of TAN 15 and acceptability of consequences in accordance with Section 7 and Appendix 1 is required.

Seven sites that are wholly in Flood Zone 1 are identified as requiring further evidence work on surface water flood risk (Table 7-6). Sites EWL018, EWL013 and GR0003 may be too small to accommodate surface water onsite. Such sites may therefore look to consider offsite storage options. It may be that the larger sites can store surface water onsite, though this would require detailed investigation and planning into the suitability of appropriate SuDS techniques.

For each Strategic Recommendation A site, a more detailed assessment of site conditions is required to ascertain actual risk, flow paths through the sites or whether risk is confined to certain parts of the site in natural depressions. Flood depths and hazards; ground condition assessments for SuDS; and provision for safe access and egress points during a flood would also need to be gauged. A detailed site design and drainage strategy together with a detailed FCA would need to demonstrate that each site would be safe for its lifetime, which is usually 100 years for residential and 70 years for other uses.

7.2.2 Strategic Recommendation B - minimum requirement FCA for nominal risk

This strategic recommendation DOES NOT take account of local circumstances, only that part of a site area falls within a flood risk zone.

This recommends that, due to not being within Zone C, within Flood Zone 3 or 2, or at significant risk from surface water, a basic FCA at the application stage should suffice to enable development to proceed.

Strategic Recommendation B applies to sites where the following criteria is true

- Any site that is wholly within Flood Zone 1
- Any site wholly outside of Zones C2 and C1

There are 70 potential sites to which Strategic Recommendation B applies, see Appendix B. This recommends that development could be allocated due to low flood risk perceived from the NRW flood maps and the DAM, assuming a site-specific FCA shows the site can be safe and it is demonstrated that the site is sequentially preferable. Four of the 70 sites are located within DAM Zone B. Permission could still be rejected if the conclusions of the FCA decide development is unsafe or inappropriate. The FCA must show no increase in flood risk elsewhere as a result of development.

7.2.3 Strategic Recommendation C – site permitted on flood risk grounds due to little perceived risk, subject to consultation with the LPA / LLFA

This strategic recommendation DOES NOT take account of local circumstances, only that no part of a site area falls within a flood risk zone.

Strategic Recommendation C applies to any site with its area 100% within DAM A, not within any surface water flood zone and less than 1 hectare in size

Strategic Recommendation C applies to three sites. See to Appendix B.

7.3 Residual risk

7.3.1 Modelled defence breach scenarios

Six targeted breach locations have been modelled based on a review of existing coastal defences and to provide FCC with indicative extents of flooding at these locations to highlight residual risk. The six breach locations are at:

- Saltney (Mold Junction Drain)
- Bumper's Lane (Waters Meet)

- Hawarden Business Park (Beeches)
- Pentre
- Queensferry
- Broken Bank

The locations together with their outputs are shown on the SFCA Maps in Appendix A.

It should be noted that a defence breach could occur anywhere; and during extreme tidal events there is greater potential for multiple defence failures, particularly where reliance is placed on sand dunes.

The breach modelling assessed the 1 in 200 AEP and the 1 in 1000 AEP events, see Table 7-7 for a summary of the risk. Both events were also modelled taking account of climate change. In accordance with Welsh Government's letter to Chief Planning Officers of 9 January 2014, consideration of climate change for a 0.5% AEP and 0.1% AEP tidal flood event has also been appraised (see Section 7.6.2). It is clear from the resultant mapping that large extents of coastal towns could be inundated in the future.

FCC in consultation with NRW will need to ensure that a pragmatic approach to regeneration within coastal towns is applied to ensure the ongoing viability of such communities. Table 7-8 lists the LDP sites that are at present day residual risk from these defence breach scenarios. Also refer to Appendix C for flood depth information.

Note, this updated breach modelling does not include for any overtopping scenarios.

Breach location	Summary o	f risk
	1 in 200 AEP event	1 in 1000 AEP event
Saltney (Mold Junction Drain)	Minimal flooding with the water following a natural watercourse channel, maximum depths of 0.25m	Small increase of flooding further west increased coverage of agricultural land, depths increased slightly to 0.35m
Bumper's Lane (Waters Meet)	Flooding to several farms and agricultural land to the north of the Dee. Buildings and infrastructure around Bumper's Lane though flooding does not extend further than Sealand Road. Depths between 0.2-0.6m	Flooding increases only slightly to the east and west though does not increase much further to the north from the 1 in 200 AEP, depths also remain largely the same
Hawarden Business Park (Beeches)	Widespread flooding from the Dee to the railway line running parallel to river. Average depths are around 0.5m	Neither the extent of flooding nor flood depths increase by much
Pentre	Flooding to Pentre and Sandycroft north of the railway line, flooding several buildings. Average depths between 0.2 – 0.7m	Increased flood extents though water does not pass railway line to the south. Depths slightly deeper with averages between 0.4 – 0.8m
Queensferry	Flooding confined mainly to the north of the railway line though extensive. Average depths around 0.2, and max depths at 0.7m	Flood extent does not increase much beyond further shallow flooding of more to the east and west. Depths also remain similar
Broken Bank	Deep flooding to surrounding rural land around 1.4m in some places. Flooding mainly contained north of Weighbridge Road	Slightly increased flood extent with no great increase in depths. Max depth approx. 1.6m

Table 7-7 Summary of communities at residual risk of defence breaches (present day)

Site ID	Site Name	Site Area (ha)	Proposed use
PE2.9	Evans Business Centre	7.85	Employment
PE2.10	Dock Road	14.08	Employment
PE2.11	Deeside Industrial Park and DARA	766.65	Employment
PE2.16	Hawarden Industrial Park, Chester Aerospace Park and Hawarden Airport	369.55	Employment
PE2.22	Queensferry Industrial Estate	36.47	Employment
PE2.23	Expressway Business Park	2.02	Employment
PE2.29	Sandycroft Industrial Estate	32.60	Employment

Table 7-8: LDF sites at residual tidal flood risk (present day 0.1% AEP)

7.3.2 Culvert blockage modelling

Residual risk has been assessed at the Hawarden Business Park by modelling blockage scenarios on three structures on Broughton Brook:

- Manor Road culvert (333707, 364631)
- Flood Storage Outfall/Basin culvert (FSO) (33379, 364729)
- Airfield View Lane culvert (333866, 364778)

These structures were assessed as part of a fluvial flood risk summary in December 2014 and further updated in June 2016. In accordance with NRW blockage guidance 19 and in agreement with NRW, a 67% blockage scenario (medium) was applied with the 1% AEP +CC and 0.1% AEP events being modelled. Further blockages of structures downstream of Airfield View Lane culvert were not analysed as there was a concern that these structures would be by-passed or overtopped as is seen at lower AEP events.

The primary sites affected by residual risk from the blockage of the structures are PE1.1 and PE1.2 though flood outlines from these scenarios additionally affect sites 3 and PE2.16. The sites PE1.1, PE1.2 and 3 all lie within the outline of the larger Principal Employment Site PE2.16.

Flood extents from all blockage scenarios are confined to the south of Chester Road to the west whilst spreading north-east across site PE2.16, Table 7-9 contains percentage coverage of the sites by scenario. Overall, the flood extents from the 0.1% AEP blockage events are smaller than Flood Zone 2 at this location so it could be reasonably stated that these sites are at residual risk already. The extents for each of the sites are shown in Table 7-9, with mean and max depths included in Table 7-10 and Table 7-11.

 $^{^{19}\} https://natural resources.wales/media/684120/ogn100-flood-risk-management-modelling-blockage-and-breach-scenarios.pdf$

Site Ref	Area (ha)	Manor Road 1% AEP+CC	Manor Road 0.1% AEP	FSO 1% AEP+CC	FSO 0.1% AEP	Airfield 1% AEP+CC	Airfield 0.1% AEP
PE1.1	5.73	0.91	1.06	0.004	0.87	N/A	N/A
PE1.2	17.82	1.41	1.46	1.02	1.40	0.23	1.17
3	32.47	4.70	6.21	6.65	7.48	7.10	8.43
PE2.16	369.55	65.55	88.23	41.14	80.02	31.72	60.65

Table 7-9: Percentage of site coverage by blockage flood extents

Site Ref	Mano	r Road	F	so	Air	field
	1% AEP +CC	0.1% AEP	1% AEP +CC	0.1% AEP	1% AEP +CC	0.1% AEP
PE1.1	0.2	0.2	0	0.2	N/A	N/A
PE1.2	0.7	0.8	0.5	0.7	In channel	0.6
3	0.4	0.4	0.3	0.4	0.4	0.4
PE2.16	0.3	0.5	0.2	0.4	0.3	0.3

Table 7-10 Average flood depths to sites

Site Ref	Mano	r Road	F:	so	Air	field
	1% AEP +CC	0.1% AEP	1% AEP +CC	0.1% AEP	1% AEP +CC	0.1% AEP
PE1.1	0.3	0.3	0	0.3	N/A	N/A
PE1.2	1.4	1.5	0.9	1.4	In channel	1.1
3	0.7	0.9	0.6	0.9	0.7	0.8
PE2.16	0.7	0.9	0.8	0.8	0.6	0.8

Table 7-11 Maximum flood depths to sites

7.4 Summary of justification and acceptability testing outcomes

There are several outcomes which could come out of the Justification and Acceptability Testing process following on from this SFCA. Each possible outcome is discussed below. The LPA should refer to Sections 7.2 and 7.3 of this report, and Appendix B and C, for details on the strategic sites assessments carried out for this SFCA.

7.4.1 Rejection of site

A site which fails to pass the Justification and Acceptability Testing would be rejected. In terms of surface water flood risk, if risk is considered significant or where the size of the site does not allow for onsite storage or application of appropriate SuDS then such sites could be rejected.

7.4.2 Consideration of site layout and design

Site layout and site design is important at the site planning stage where flood risk exists. The site area would have to be large enough to enable any alteration of the developable area of the site to remove development from high risk flood zones, or to leave space for onsite storage of flood water. Surface water risk and opportunities for SuDS should also be assessed during the planning stage.

Depending on local circumstances, if it is not possible to adjust the site boundary to remove the site footprint from high risk Flood Zone 3 or DAM Zone C2 to a lower risk zone then development may not be permitted. If it is not possible to adjust the developable area of a site to remove the proposed development to a lower risk zone or

to incorporate the onsite storage of water within site design, then the Justification and Acceptability Test would have to be passed as part of a site-specific Flood Consequence Assessment.

7.4.3 Surface water risk to potential sites

For sites at surface water flood risk the following should be considered:

- Possible redesign or relocation for those sites at identified to be at significant risk:
- A detailed site-specific FCA incorporating surface water flood risk management or drainage strategy for larger strategic sites;
- An FCA may want to consider detailed surface water modelling, particularly for the larger sites which may influence sites elsewhere;
- The size of development and the possibility of increased surface water flood risk caused by development on current Greenfield land (where applicable), and cumulative impacts of this within specific areas;
- Management and re-use of surface water on-site, assuming the site is large enough to facilitate this and achieve effective mitigation. Effective surface water management should ensure risks on and off site are controlled;
- Larger sites could leave surface water flood prone areas as open greenspace, incorporating social and environmental benefits;
- SuDS should be used where possible. Appropriate SuDS may offer opportunities to control runoff to Greenfield rates or better. Restrictions on surface water runoff from new development should be incorporated into the development planning stage. For brownfield sites, where current infrastructure may be staying in place, then runoff should attempt to mimic that of Greenfield rates, unless it can be demonstrated that this is unachievable or hydraulically impractical. Developers should refer to the national 'non-statutory technical standards for sustainable drainage systems' and other guidance documents cited in Section 7.6.5 of this report;
- Runoff up to and including the 1% AEP event should be managed on site where possible:
- Measures of source control should be required for development sites;
- Developers should be required to set part of their site aside for surface water management, to contribute to flood risk management in the wider area and supplement green infrastructure networks;
- Developers should be required to maximise permeable surfaces;
- Flow routes on new development where the sewerage system surcharges as a consequence of exceedance of the 1 in 30 AEP design event should be retained.

7.5 Safeguarded land for flood storage

Where possible, the LPA may look to allocate land designed for flood storage functions. Such land can be explored through the site allocation process whereby an assessment is made, using this SFCA, of the flood risk at potential sites and what benefit could be gained by leaving the site undeveloped. In some instances, the storage of flood water can help to alleviate flooding elsewhere, such as downstream developments. Where there is a large area of a site at risk that is considered large enough to hinder development, it may be appropriate to safeguard this land for the storage of floodwater.

Applicable sites may include any current greenfield sites:

 That are considered to be large enough to store flood water to achieve effective mitigation,

- With large areas of their footprint at high or medium surface water flood risk (based on the surface water risk),
- That is within the floodplain (Flood Zone 3/ DAM C2),
- With large areas of their footprint at risk from DAM C1 and Flood Zone 2, and
- That are large enough and within a suitable distance to receive flood water from a nearby development site, where storage is not feasible, using appropriate SuDS techniques which may involve pumping, piping or swales / drains.

Brownfield sites could also be considered though this would entail site clearance of existing buildings and conversion to greenspace.

By using the sequential approach to site layout, the LPA and developers should be able to avoid the areas at risk and leave clear for potential flood storage. See the SFCA Maps in Appendix A to spatially assess the areas of the sites at risk.

7.6 Accounting for Climate Change

Climate change will increase flood risk over the lifetime of a development. The effects are well documented and include rising sea levels and more frequent periods of heavy rainfall increasing the risk of flooding.

When considering new development proposals, TAN 15 states that it is necessary to take account of the potential impact of climate change over the lifetime of development. Residential development is assumed to have a lifetime of 100 years while a lifetime of 75 years is assumed for non-residential developments. To ensure future development can provide a safe and secure living and /or working environment throughout its lifetime, national planning policy requires proposals in areas of high flood risk to be accompanied by an assessment of flooding consequences to and from the development, taking into account the impacts of climate change. This SFCA does not focus on detailed mitigation measures for climate change but rather focuses on the 0.1% extreme event, as per TAN 15 requirements.

However, climate change scenarios have been appraised as part of this SFCA through the breach scenario modelling. The 0.5% AEP and 0.1% AEP events plus climate change, have been assessed in for the LDP sites (see Section 7.6.2).

7.6.1 Welsh Government Climate Change Allowances

The Welsh Government Chief Planning Officer letter and guide on FCA Climate Change Allowances (2016) sets out requirements. The purpose of this guide is to set out the climate change allowances that should be used in flooding consequence assessments submitted in support of relevant planning applications, and to inform development plan allocations

Providing an allowance for the potential impacts of climate change when assessing future flood risk, allows for development proposals to incorporate design measures that help to manage that risk and improve resilience

In line with TAN 15, the climate change allowances have been informed by latest available information on climate change projections and different scenarios of carbon dioxide (CO2) emissions to the atmosphere. Allowances are provided for different epochs (periods) of time over the next century.

Table 7-12 indicates the anticipated increase in peak river flows for the river basin districts that cover Flintshire. The allowances are consistent with the A1B (medium) emissions scenario derived from latest research projects and converted into regionalised data of climate change on flood flows for the 2020s, 2050s and 2080s time-horizon, and for the B1 (low) and A1F1 (high) emissions scenarios for the 2080s time-horizon.

Estimates of peak flow increases are provided, which represent future flood risk. The allowances are based on percentage increases of change from a 1961-1990 baseline and are provided for the:

- 10th percentile (lower end estimate)
- 50th percentile (change factor/central estimate)
- 90th percentile (upper end estimate).

RBD	Allowance	Total Potential Change Anticipated for				
	Category	2020s (2015- 2039)	2050s (2040- 2069)	2080s (2070- 2115)		
Dee	Upper end	+20%	+30%	+45%		
	Higher central	+15%	+20%	+25%		
	Central	+10%	+15%	+20%		

Table 7-12 Peak flow increases for climate change in Dee RBD

Period	mm increase	Cumulative rise (mm)
2021-2025	17 (years inclusive) x 3.5	17.5
2026-2055	30 x 8.0	240.0
2056-2085	30 x 14.5	345.0
2086-2091	6 x 14.5	145.0
75 year lifetime	add	747.5

Table 7-13 Cumulative SLR for a 75-year lifetime development (base year 2020)

Sea Level Rise Allowances

Projections of relative mean sea level rise (SLR) for each epoch (period of time) is provided for the Welsh coastline in Table 7-13 and Table 7-14. These projections are consistent with the latest global predictions for sea level rise with the rate of change is projected to increase in each epoch. To calculate sea level, add the annual allowances for each year post for the agreed lifetime of development. demonstrate how to apply the calculation for 100-year developments commencing in 2020.

Period	2021- 2025	2026- 2055	2056- 2085	2086- 2120	Cumulative rise to 2116
Annual Change (mm/yr)	3.5	8.0	11.5	14.5	N/A
Total Increase (mm)	17.5	240.0	345.0	507.5	1110

Table 7-14 Cumulative SLR for a 100 year lifetime development (base year 2020)

Developments built in 2120 with a 100 year lifetime must demonstrate resilience to sea level rises until 2120. This table shows that an allowance for an increase of 1110mm/1.11m should be made. When considering proposals with a lifetime of

development beyond 2116, an additional allowance of 14.5mm should be added for each subsequent year $^{\!20}\!.$

7.6.2 Modelled climate change defence breach scenarios

The modelled climate change scenarios used the new Welsh Climate Change guidance for planning, as detailed in Section 7.6.1. For this SFCA fluvial climate change scenarios were not modelled due to there being no change in the allowances. However, the Welsh Climate Change guidance has been used to establish the cumulative sea level rise due to climate change for the year 2120.

Table 7-15 summarises the possible consequences to existing communities of each targeted breach plus the impacts of climate change occurring. Table 7-16 lists the specific LDF sites at residual risk in the future.

Breach location	Summary of risl	(
	1 in 200+CC AEP event	1 in 1000+CC AEP event
Saltney (Mold Junction Drain)	Flooding to buildings and land immediately south of the breach up to the railway line, there is additional flooding on land south of the railway also. Depths between 0.5-0.6m	Flooding increases to the west and to the south of the railway, depths are similar to the 1 in 200 AEP event
Bumper's Lane (Waters Meet)	Extensive flooding to several farms and agricultural land to the north of the Dee. Buildings and infrastructure around Bumper's Lane and Sealand Road. Depths of approx. to 0.6m, max of 1.2m	Flooding extents does increase slightly from the 1 in 200 AEP with depths remaining largely the same
Hawarden Business Park (Beeches)	Widespread flooding passing further south than Chester Road (B5129). Eastern parts of Mancot now seeing flooding. Mainly agricultural land being inundated. Average depths of 1m, with max values reaching 2m	The extent of flooding does not increase by much, neither does the flood depth values
Pentre	Extensive flooding to Pentre and Sandycroft both north and south of the railway line. Average depths between 0.7m and 1m some locations seeing flooding up to 2.5m	Increased flooding to all areas. Depths slightly deeper with averages of 0.8m – 1m
Queensferry	Flooding is widespread in Shotton, both sides of the railway line. Average depths around 1m - 1.25m	Flood extent increases to cover most of Sandycroft as well as infilling previous dry areas in Shotton. Depths increased up to an average of 1.35m
Broken Bank	Deep flooding to surrounding rural land and along Chester Road West reaching 2.5m in some places. No extensive flooding of infrastructure south of Weighbridge Road	Similar flood extent at the west of the railway line with increased outlines to the east. Depths increased to 2.8m

Table 7-15 Summary of communities potentially at residual risk from defence breaches in the future

Site ID	Site Name	Site Area (ha)	Proposed use
MAN001	Land between Mancot Lane and Mancot Way,	1.55	Housing
	Mancot		
MAN006	Land adj Mancot Way/ Foxes Close, Mancot	0.93	Housing
1	Land at Saltney	40.20	School
PE1.11	River Lane	1.17	Employment
PE1.12	Rowley's Drive	0.81	Employment
PE2.4	Broughton Mills	8.31	Employment
PE2.9	Evans Business Centre	7.85	Employment
PE2.10	Dock Road	14.08	Employment
PE2.11	Deeside Industrial Park and DARA	766.65	Employment
PE2.16	Hawarden Industrial Park, Chester Aerospace Park and Hawarden Airport	369.55	Employment
PE2.21	Pentre Industrial Estate	15.78	Employment
PE2.22	Queensferry Industrial Estate	36.47	Employment
PE2.23	Expressway Business Park	2.02	Employment
PE2.25	Brymau One, Two, and Three Estates and Glen Industrial Estate	5.06	Employment
PE2.26	The Borders Industrial Park, Chesterbank Industrial Park and Brymau Four Estate	12.28	Employment
PE2.27	Engineer Park and St Ives Park	26.01	Employment
PE2.28	Glendale Business Park	13.85	Employment
PE2.29	Sandycroft Industrial Estate	32.60	Employment
PE2.30	Rowley's Drive	5.00	Employment

Table 7-16 LDF sites at residual tidal flood risk in the future (0.1% AEP CC2120)

7.6.3 Future Impacts of Climate Change

This section will look into the future impacts of climate change on small coastal settlements and the impacts on coastal process and increasing pressures on coastal defences.

How climate change could affect sea level rise in coastal communities

Sea level rise is projected to increase as a result of climate change. It is expected that the UK coastlines will be subjected to more frequent and severe storms and wave action which will increase coastal erosion, damage to coastal defences and the likelihood and consequences of coastal flooding. Increased erosion rates can lead to a loss of land, damage to railway lines and roads that are located in close proximity to the coast. Additionally, this may threaten beaches and therefore tourism in Wales, which contributes over £2.5 billion each year to the Welsh economy²¹. In relation to local

community impacts, climate change may also lead to longer-term effects on neighbourhoods. For instance, areas that suffer the impacts of climate change or are considered to be at high risk may be affected by increased flooding and a reduction in housing values, development and investment, and also increased insurance costs for home owners and business owners alike.

What are the impacts of climate change on coastal processes, wave action and sediment supply?

According to many researchers, climate change will cause a rise in sea levels and wave heights and accelerate coastal erosion making coastal areas more vulnerable, especially communities relying on the immediate coastal area for their residence, communications and economic and social activities²².

The coast is subject to both erosion and accretion. It is estimated that about 23% of the Welsh coastline is eroding (346km of a total of 1,498km). The combination of sea level rise and erosion is likely to reduce the area of beaches and affect other coastal features. It is assumed that urban areas will continue to be protected against sea level rise and coastal erosion. However, this is likely to require significant future investment and, in some cases, may not be sustainable²³.

Coastal erosion and sea-level rise may increase or reduce sediment supply, depending on local context. However, change in the character or extent of these habitats is certain, requiring proactive management responses. Where fixed landward assets prevent natural migration of the coastline, habitat loss will occur due to coastal squeeze; in other locations rollback or managed realignment should be considered as management options. Coastal water tables may rise due to sea level rise, or fall due to changing rainfall, depending on local context. Both may have serious impacts on coastal biodiversity, and on other coastal land uses.

What are the increased pressures on sea defences and tidal flood embankments due to climate change?

Coastal defences currently protect nearly 28% of the Welsh coastline and £8 billion of assets from coastal erosion and flooding 24 . However, these defences do not sufficiently manage the existing risk of coastal erosion and sea level rise as a result of climate change will further reduce their efficiency. Building coastal defences can be technically difficult and may not be affordable in all locations in the future.

The previous Welsh Government invested £39 million during 2010-11 in flood and coastal erosion risk management in Wales. If investment in flood risk management is maintained at current levels then by 2035 the number of properties in Wales at significant likelihood of flooding would increase from 65,000 to 115,000, with a consequent increase in expected annual damages. To maintain the number of properties at flood risk in 2035 at levels comparable to now may require trebling investment levels, while reducing the number of properties at risk would require further investment again. A wider range of actions may be necessary to manage the impacts of current and future flooding²².

The coastal management strategy for a section of coast (e.g., hard coastal defences, beach nourishment, managed realignment) is a key aspect for determining the longterm response of the coast to climate change effects, including sea-level rise. There is now increased realisation that current coastal management practices, which are very much focussed on hold-the-line adaption strategies, are not sustainable in the longterm. The second generation Shoreline Management Plans increasingly advocate managed realignment as an alternative adaptation strategy, especially for less developed stretches of coast. Managed realignment is likely to increase in the future as a key management strategy and although this will result in increased local erosion rates, the enhanced erosion may benefit other sections of coast by reducing erosion or

²² https://www.jrf.org.uk/report/impacts-climate-change-disadvantaged-uk-coastal-communities 23 A climate change risk assessment for Wales (Defra)

²⁴ http://www.assembly.wales/NAfW%20Documents/ki-025.pdf%20-%2003112011/ki-025-English.pdf

even causing accretion. Adaptation is emerging as the key coastal management paradigm to cope with coastal erosion.

North West England and North Wales Shoreline Management Plan 2: Sub-cell 11a - Great Orme's Head to Southport

This section of coast includes the area stretching between Great Orme's Head, North Wales, and Southport and incorporates the two major estuaries of the Dee and Mersey as well as the smaller Clwyd and Alt estuaries. As such, there are significant interactions between the open coast and the estuaries in this section.

This coastline is important for tourism (North Wales), industry and commercial activities (Dee and Mersey estuaries) as well as its environmental significance (Formby Dunes, Dee estuary).

For much of the coastline, the preferred SMP2 policies will maintain existing defences where economically viable in the long-term, thus having a beneficial impact on people, their health and property by reducing risk to areas of significant urban development and developed parts of the coastline from flooding or erosion. In some circumstances funding streams for future maintenance of these defences may by via public/private co-funding or through private contributions.

It should also be recognised however, that a policy to hold the line for a frontage does not mean guaranteed funding and issues of affordability and prioritisation of defence schemes may become more pronounced in the future and the probability and consequences of coastal flooding may increase significantly due to projected climate change. Consequently, in the future there will be a need to complement defences with a wider range of actions to manage the consequences of flooding and coastal erosion, through adaptation and resilience measures (see section 7.6.4).

It important to note that due to the significant uncertainties associated with climate change and the magnitude of change, there is potential for SMP2 policies to need to be reviewed in the future.

Managed realignment:

There are numerous environmental conservation designations along the frontage, with the Dee estuary internationally designated as a Special Protection Area, Ramsar site and Marine Protection Area to protect the extensive inter-tidal flats and the numerous waterfowl that use the habitat. The long term plan is to continue to manage risks to commercial and industrial assets from flooding and erosion, but to also allow more natural evolution where appropriate. In order to mitigate the impacts of the defences on the evolution of the estuary in combination with expected long term future sea level rise the plan allows for creation of areas of new habitat by moving defences inland where opportunities exist.

Managed realignment was therefore assessed as an alternative policy at a number of locations within the Dee. As a result of this assessment a number of areas with potential opportunities for managed realignment have been identified. It was not deemed appropriate to propose managed realignment as the headline policy in these locations in the short term until a suitable plan for delivering this realignment has been developed and all the potential options have been reviewed with stakeholders.

7.6.4 Property Flood Resilience (PFR)

Flood resilience and resistance measures are designed to mitigate flood risk and reduce damage and adverse consequences to existing property. Resistance and resilience measures may aim to help residents and businesses recover more quickly following a flood event

It should be noted that it is not possible to completely prevent flooding to all communities and business.

It should be noted that PFR measures would not be expected to cause an increase in flood risk to other properties or other parts of the local community. They will help mitigate against flood risk but, as with any flood alleviation scheme, flood risk cannot

be removed completely. Emergency plans should, therefore, be in place that describe the installation of measures and residual risks.

As the flood risk posed to a property cannot be removed completely, it is recommended that PFR products are deployed in conjunction with pumps of a sufficient capacity. Pumps will help manage residual flood risks not addressed by resistance measures alone such as rising groundwater.

Definitions

Flood resilience measures aim to reduce the damage caused by floodwater entering a property. Flood resilience measures are based on an understanding that internal flooding may occur again and when considering this eventuality, homes and businesses are encouraged to plan for flooding with an aim of rapid recovery and the return of the property to a habitable state.

For example, tiled floors are easier to clean than carpets, raised electricity sockets and high-level wall fixings for TVs / computers may mean that that power supply remains unaffected. Raising kitchen or storage units may also prevent damage that may not require replacement after a flood. There is a lot of information available about what items get damaged by floodwater and features that are considered to provide effective resilience measures that can be installed at a property.

Flood resistance measures aim to reduce the amount of floodwater entering the property. Obvious inflow routes, such as through doors and airbricks may be managed, for example, by installing bespoke flood doors, door flood barriers and automatic closing airbricks. However, the property's condition and construction are also key to understanding how floodwater may enter and move between buildings. For example, flood water can also flow between properties through connecting cavity walls, cellars, beneath suspended floors and through internal walls. Flood resistance measure alone may not keep floodwater out. Building condition is a critical component of any flood mitigation study.

Property Mitigation Surveys

To define the scale and type of resistance or resilience measures required, a survey will need to be undertaken to pick up property threshold levels, air brick levels, doorways, historic flood levels and a number of ground spot levels required to better understand the flood mechanisms for flood water arriving at the property (e.g. along road, pavements, etc.). The depth of flooding at each property will help guide the selection of resistance measures proposed. Surveys will need to include consideration of issues such as:

- Detailed property information
- An assessment of flood risk, including property (cross) threshold levels
- Routes of water ingress (fluvial, ground and surface water flooding)
- An assessment of impact of flood waters
- A schedule of measures to reduce risk (resistance and resilience)
- Details of recommendations (including indicative costs)
- Advice on future maintenance of measures
- Advice on flood preparedness

All sources of flooding will need to be considered, including a comprehensive survey of openings (doors, windows and air bricks), as well as potential seepage routes through walls and floors, ingress through service cables, pipes, drains and identify possible weaknesses in any deteriorating brickwork or mortar.

7.6.5 Sustainable Drainage Systems (SuDS)

Development has the potential to cause an increase in impermeable area, an associated increase in surface water runoff rates and volumes, and consequently a potential increase in downstream flood risk due to overloading of sewers, watercourses, culverts and other drainage infrastructure. Managing surface water discharges from new development is therefore crucial in managing and reducing flood risk to new and existing development downstream. Carefully planned development can also play a role in reducing the amount of properties that are directly at risk from surface water flooding.

As discussed in Section 3.3.3, Schedule 3 of the FWMA states the requirement for surface water drainage for new developments to comply with mandatory National Standards for SuDS²⁵. The interim non statutory national standards and guidance, published by Welsh Government in January 2016, have formed the basis for these Statutory Standards with minor amendments to take into account comments received throughout the consultations. These were introduced to enable designers; property developers; local authorities and other interested parties to both demonstrate that they have taken account of Welsh Government's planning advice on Development and Flood Risk²⁶, Nature Conservation and Planning²⁷ and to test the standards, so that if necessary they can be revised before being placed on a statutory footing.

The then Department for Communities and Local Government (DCLG), now known as the Ministry of Housing, Communities and Local Government (MHCLG), announced, in December 2014, that local planners should be responsible for delivering SuDS²⁸. Changes to planning legislation gave provisions for major applications of ten or more residential units or equivalent commercial development to require sustainable drainage within the development proposals in accordance with the 'non-statutory technical standards for sustainable drainage systems¹²⁹, published in March 2015. A Practice Guidance³⁰ document has also been developed by the Local Authority SuDS Officer Organisation (LASOO) to assist in the application of the non-statutory technical standards.

SuDS maintenance options must clearly identify who will be responsible for SuDS maintenance and funding for maintenance should be fair for householders and premises occupiers; and, set out a minimum standard to which the sustainable drainage systems must be maintained. For SuDS which serve more than one property, the SAB must adopt and be responsible for the maintenance of the system, to ensure that the SuDS continues to comply with the required SuDS standards.

There is a priority hierarchy for the destination of runoff when considering design criteria for SuDS, this includes the following possible destinations in order of preference (note that options 3 and 4 should only be used in exceptional circumstances):

- 1. To ground;
- To surface water body;
- To surface water sewer;
- 4. To combined sewer.

Effects on water quality should also be investigated when considering runoff destination in terms of the potential hazards arising from development and the sensitivity of the

²⁵ https://gov.wales/sites/default/files/publications/2019-06/statutory-national-standards-for-sustainable-drainage-

²⁶ http://gov.wales/topics/planning/policy/tans/tan15/?lang=en

²⁷ http://gov.wales/topics/planning/policy/tans/tan5/?lang=en

²⁸ http://www.parliament.uk/business/publications/written-questions-answers-statements/writtenstatement/Commons/2014-12-18/HCWS161/

²⁹ https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/415773/sustainable-drainagetechnical-standards.pdf
30 http://www.susdrain.org/files/resources/other-

runoff destination. Developers should also establish that proposed outfalls are hydraulically capable of accepting the runoff from SuDS through consultation with the LLFA, NRW and DCWW.

The non-statutory technical standards for sustainable drainage systems (March 2015) sets out appropriate design criteria based on the following:

- 1. Flood risk outside the development;
- 2. Peak flow control;
- 3. Volume control;
- 4. Flood risk within the development;
- 5. Structural integrity;
- 6. Designing for maintenance considerations;
- 7. Construction.

Many different SuDS techniques can be implemented. As a result, there is no one standard correct drainage solution for a site. In most cases, a combination of techniques, using the Management Train principle (see Figure 7-1), will be required, where source control is the primary aim.

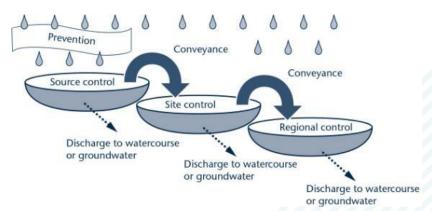


Figure 7-1: SuDS Management Train Principle³¹

The effectiveness of a flow management scheme within a single site is heavily limited by land use and site characteristics including (but not limited to) topography; geology and soil (permeability); and available area. Potential ground contamination associated with urban and former industrial sites should be investigated with concern being placed on the depth of the local water table and potential contamination risks that will affect water quality. The design, construction and ongoing maintenance regime of any SuDS scheme must be carefully defined as part of a site-specific FCA Including a SuDS Design Statement.

A clear and comprehensive understanding of the catchment hydrological processes (i.e. nature and capacity of the existing drainage system) is essential for successful SuDS implementation.

7.6.6 Local Standards

In addition to the national standards, the LPA and LLFA may set local requirements for planning permission that include more rigorous obligations than these non-statutory technical standards. More stringent requirements should be considered where current Greenfield sites lie upstream of high risk areas. This could include improvements on

Greenfield runoff rates. FCC does not currently have its own guidance for SuDS therefore the national standards should apply.

However, as discussed in Section 3.3.3, in January 2017, FCC adopted a SPG note concerning surface water flood risk – 'LPGN 29 – Management of Surface Water for New Development', which states that this SPG should be afforded considerable weight as a material planning consideration. The note includes details on surface water design criteria and SuDS for new development, including the minimum surface water discharge limits from new developments. Also included is an indicative drainage proposal which contains the minimum requirements for surface water management to be included within a planning application. This SPG can be found online via:

https://www.flintshire.gov.uk/en/PDFFiles/Planning/Adopted-SPGNs/SPGN-No-29.-Management-of-Surface-Water-for-New-Development.pdf

There is also a draft SPG that is specific to SuDS – 'No. 19 Water Conservation and Sustainable Drainage Systems' –

https://www.flintshire.gov.uk/en/PDFFiles/Planning/Revised-LPGNs/LPGN-19.pdf

The CIRIA SuDS Manual³² 2007 should also be consulted by the LPA and developers. The SuDS manual (C697) is highly regarded and was updated in 2016 to incorporate the latest research, industry practice, technical advice and adaptable processes to assist in the planning, design, construction, management and maintenance of good SuDS. The SuDS Manual complements the non-statutory technical standards and goes further to support the cost-effective delivery of multiple benefits.

Drainage for New Developments

Developers must always adhere to the following core SuDS principles:

- Water to be managed on or as close to the surface and source of the runoff as possible.
- Pollution is prevented at source, and not reliant on the drainage system to treat
 it,
- Protection of people from increased flood risk, and the environment from ecological changes in flow rates, patterns and sediment movement caused by the development,
- Use of the SuDS Management Train (see Figure 7-1) sequentially across a site rather than a single "end of pipe" feature, such as a pond, to serve the whole development,
- SuDS should perform safely, reliably and effectively over the design lifetime of the development. The type of SuDS implemented must account for the requirements for reasonable levels of maintenance,
- Avoidance of the need for pumping where possible, and
- SuDS should remain affordable, taking into account both construction and longterm maintenance costs and the additional environmental and social benefits afforded by the system.

Development has the potential to cause an increase in impermeable area, an associated increase in surface water runoff rates and volumes, and a consequent potential increase in downstream flood risk due to overloading of sewers, watercourses, culverts and other drainage infrastructure.

Managing surface water discharges from new development is crucial in managing and reducing flood risk to new and existing development.

Carefully planned development can also play a role in reducing the amount of properties that are directly at risk from surface water flooding. The Planning System has a key role to play in setting standards for sustainable drainage from new

developments and ensuring that developments are designed to take account of the risk from surface water flooding. Sustainable drainage plays an important part in reducing flows in the sewer network and in meeting environmental targets, alongside investment in maintenance by the water companies on their assets. Water companies plan their investment on a five year rolling cycle, in consultation with key partners, including the

FCC LPA and LLFA expect the content for a SuDS Design Statement for a typical housing development should include:

- Description and plan showing the characteristics of the site including topography, ground conditions, natural directions and paths for water movement
- Options analysis of discharge routes offsite (infiltration, watercourse, surface water sewer) with information on any agreements / confirmed information.
- Options analysis of drainage solutions demonstrating considerations of SuDS principles in development layout. Particularly - keeping water on or near the surface from collection to conveyance to storage, the use of sub-catchments and SuDS in sequence from management at source to larger features in open space, integration with landscape. NOTE If no agreement on discharge route has been established alternatives must be explored.
- · Outline figures to support drainage options
- Principles of management of return periods both within and external to the drainage system up to 1 in 100 plus climate change
- Proposed management arrangements for all drainage infrastructure including who is responsible, what maintenance activities and how resourced.
- Concept plan and critical sections to demonstrate feasibility of solutions

The most successful SuDS schemes are delivered through a collaboration between the Drainage Engineer and the design team for example, the architect, landscape architect and Highway Engineer.

Overland Flow Paths

Underground drainage systems have a finite capacity and regard should always be given to larger events when the capacity of the network will be exceeded. Hence there is a need to design new developments with exceedance in mind. This should be considered alongside any surface water flows likely to enter a development site from the surrounding area.

Master planning should ensure that existing overland flow paths are retained within the development. As a minimum, the developer should investigate, as part of a FCA, the likely extents, depths and associated hazards of surface water flooding on a development site, as shown by the RoFSW dataset. This is considered to be an appropriate approach to reduce the risk of flooding to new developments. Green infrastructure should be used wherever possible to accommodate such flow paths. Floor levels should always be set a minimum of 300 mm above adjacent roads to reduce the consequences of any localised flooding.

The effectiveness of a flow management scheme within a single site is heavily limited by site constraints including (but not limited to) topography; geology and soil (permeability); development density; existing drainage networks both on-site and in the surrounding area; adoption issues; and available area. The design, construction and ongoing maintenance regime of such a scheme must be carefully defined at an early stage and a clear and comprehensive understanding of the catchment hydrological processes (i.e. nature and capacity of the existing drainage system) is essential.

8 Emergency Planning

The provisions for emergency planning for local authorities as Category 1 responders are set out by the Civil Contingencies Act, 2004. This framework is a resource for all involved in emergency planning and response to flooding from the sea, rivers, surface water, groundwater and reservoirs. The Framework sets out Government's strategic approach to:

- Ensuring all delivery bodies understand their respective roles and responsibilities when planning for and responding to flood related emergencies;
- Giving all players in an emergency flooding situation a common point of reference which includes key information, guidance and key policies;
- · Establishing clear thresholds for emergency response arrangements;
- Placing proper emphasis on the multi-agency approach to managing flooding events;
- Providing clarity on the means of improving resilience and minimising the impact of flooding events;
- Providing a basis for individual responders to develop and review their own plans; and
- Being a long-term asset that will provide the basis for continuous improvement in flood emergency management.

Along with the NRW flood warning systems, there are a range of flood plans at a subregional and local level, outlining the major risk of flooding and the strategic and tactical response framework for key responders.

This SFCA contains useful data to allow emergency planning processes to be tailored to the needs of the area and be specific to the flood risks faced. The SFCA Maps in Appendix A and accompanying GIS layers should be made available for consultation by emergency planners during an event and throughout the planning process.

8.1 Civil Contingencies Act

Under the Civil Contingencies Act (CCA, $2004)^{33}$, the LLFA and LPAs are classified as Category 1 responders and thus have duties to assess the risk of emergencies occurring, and use this to:

- Inform contingency planning;
- · Put in place emergency plans;
- Put in place business continuity management arrangements;
- Put in place arrangements to make information available to the public about civil protection matters;
- Maintain arrangements to warn, inform and advise the public in the event of an emergency;
- Share information with other local responders to enhance coordination; and
- Cooperate with other local responders to enhance coordination and efficiency and to provide advice and assistance to businesses and voluntary organisations about business continuity management.

During an emergency, such as a flood event, the local authority must also co-operate with other Category 1 responders (such as the emergency services and the NRW) to provide the core response.

8.1.1 North Wales Local Resilience Forum

The North Wales Local Resilience Forum (LRF) has identified flood risk as a very high risk in the North Wales Community Risk Register. The LRF produce Multi Agency Plans for responding to emergencies within North Wales including flooding.

Within Flintshire the Joint Emergency Planning Unit also produce their own Multi Agency Plans in consultation with the LRF and the Category 1 Responders (Police, Fire, Ambulance, Health, Natural Resources Wales, Coastguard, Local Authorities etc) for specific flood risks in the county. The plans currently in place include the Multi Agency Response Plan for flooding in Flintshire.

The plan covers the River Alyn Catchment and its communities including Rhydymwyn, Mold, Pontblyddyn and Llong, and the Triton Tidal Sites of point of Ayr, Ffynnongroyw, Greenfield to Baglit, and the Hawarden Embankment and North Embankment of the canalised section of the River Dee. The plan also includes the Reservoir Inundation impact for the 5 main reservoirs in Flintshire namely Cilcain 3 and 4, Oakenholt (Flint), Ysceifiog (Caerwys) and Flour Mill (Holywell).

The Joint Emergency Planning Unit (JEPU) for Flintshire and Denbighshire Councils works closely with the North Wales Resilience Forum (NWRF), which was established in March 2005. The membership of the NWRF is made up of the strategic level managers of each of the Category 1 responders (Local Authorities including FCC, Police, Ambulance, Local Health Boards, Fire & Rescue Services and other relevant bodies). Its overall purpose is to ensure that there is an appropriate level of preparedness to enable an effective multi-agency response to emergencies including floods which may have a significant impact on the communities of North Wales.

8.1.2 North Wales Community Risk Register

As a strategic decision-making organisation, the NWLRF prepared a Community Risk Register (CRR), which considers the likelihood and consequences of the most significant risks and hazards the area faces, including fluvial and urban flooding. This SFCA can help to inform this. The CRR is considered as the first step in the emergency planning process and is designed to reassure the local community that measures and plans are in place to respond to the potential hazards listed within the CRR.

https://www.flintshire.gov.uk/en/PDFFiles/Emergency-Planning/68076-NWCRR-A5-Booklet-English.pdf

8.1.3 Community Emergency Plan

Communities may need to rely on their own resources to minimise the impact of an emergency, including a flood, before the emergency services arrive. Many communities already help each other in times of need, but experience shows that those who are prepared cope better during an emergency. Communities with local knowledge, enthusiasm and information are a great asset and a Community Emergency Plan can help. Details on how to produce a community emergency plan, including a toolkit and template, are available from Government's website³⁴.

The FLRF has also provided information on how to create a community emergency plan, which is available from:

http://www.flintshire.gov.uk/en/Resident/Emergency-Planning/Emergency-Planning.aspx

FCC provides information on emergency planning for flooding at:

http://www.flintshire.gov.uk/en/Resident/Emergency-Planning/Floods.aspx

This SFCA provides a number of flood risk data sources that should be used when producing or updating flood plans. The LPAs will be unable to write their own specific flood plans for new developments at flood risk. Developers should write their own.

³⁴ https://www.gov.uk/guidance/resilience-in-society-infrastructure-communities-and-businesses#community-resilience

Generally, owners with individual properties at risk should write their own individual flood plans, however larger developments or regeneration areas, such as retail parks, hotels and leisure complexes, should consider writing one collective plan for the assets within an area.

This SFCA can help to:

- Update these flood plans if appropriate;
- Inform emergency planners in understanding the possibility, likelihood and spatial distribution of all sources of flooding (emergency planners may however have access to more detailed information, such as for Reservoir Inundation Maps, which have not been made available for this SFCA);
- · Identify safe evacuation routes and access routes for emergency services;
- Identify key strategic locations to be protected in flooding emergencies, and the locations of refuge areas which are capable of remaining operational during flood events:
- Provide information on risks in relation to key infrastructure, and any risk management activities, plans or business continuity arrangements;
- · Raise awareness and engage local communities;
- Support emergency responders in planning for and delivering a proportionate, scalable and flexible response to the level of risk; and
- Provide flood risk evidence for further studies.

8.2 Flood warning and evacuation plans

Developments that include areas that are designed to flood (e.g. ground floor car parking and amenity areas) or have a residual risk associated with them, will need to provide appropriate flood warning and instructions so users and residents are safe in a flood. This will include both physical warning signs and written flood warning and evacuation plans. Those using the new development should be made aware of any evacuation plans.

Whilst there is no statutory requirement on the NRW or the emergency services to approve evacuation plans, LPAs are accountable under their Civil Contingencies duties, via planning condition or agreement, to ensure that plans are suitable. This should be done in consultation with development management officers. Given the cross cutting nature of flooding, it is recommended that further discussions are held internally to the LPAs between emergency planners and policy planners / development management officers, the LLFA, drainage engineers and also to external stakeholders such as the emergency services, the NRW, DCWW/Dee Valley Water, Internal Drainage Boards and Canal & River Trust (if applicable).

It may be useful for both the LLFA and spatial planners to consider whether, as a condition of planning approval, flood evacuation plans should be provided by the developer which aim to safely evacuate people out of flood risk areas, using as few emergency service resources as possible. The application of such a condition is likely to require policy support in the LPA's Local Plans, and discussions within the North Wales Local Resilience Forum are essential to establish the feasibility / effectiveness of such an approach, prior to it being progressed. It may also be useful to consider how key parts of agreed flood evacuation plans could be incorporated within local development documents, including in terms of protecting evacuation routes and assembly areas from inappropriate development.

Once the development goes ahead, it will be the requirement of the plan owner (developer) to make sure the plan is put in place, and to liaise with the LPA and LLFA regarding maintenance and updating of the plan.

8.2.1 What should the Plan Include?

Flood warning and evacuation plans should include the information stated in **Error! Reference source not found.**. Advice and guidance on plans are accessible from the NRW website.

Consideration	Purpose
Availability of existing flood warning system	The NRW offers a flood warning service that currently covers designated Flood Warning Areas in Wales. In these areas, they are able to provide a full Flood Warning Service.
Rate of onset of flooding	The rate of onset is how quickly the water arrives and the speed at which it rises which, in turn, will govern the opportunity for people to effectively prepare for and respond to a flood. This is an important factor within Emergency Planning in assessing the response time available to the emergency services.
How flood warning is given and occupants awareness of the likely frequency and duration of flood events	Everyone eligible to receive flood warnings should be signed up to the NRW flood warning service. Where applicable, the display of flood warning signs should be considered. In particular sites that will be visited by members of the public on a daily basis such as sports complexes, car parks, retail stores. It is envisaged that the responsibility should fall upon the developers and should be a condition of the planning permission. Information should be provided to new occupants of houses concerning the level of risk and subsequent procedures if a flood occurs.
The availability of staff / occupants / users to respond to a flood warning and the time taken to respond to a flood warning	The plan should identify roles and responsibilities of all responders. The use of community flood wardens should also be considered.
Designing and locating safe access routes, preparing evacuation routes and the identification of safe locations for evacuees	Dry routes will be critical for people to evacuate as well as emergency services entering the site. The extent, depth and flood hazard rating, including allowance for climate change, should be considered when identifying these routes.
Vulnerability of occupants	Vulnerability classifications associated with development as outlined in the TAN 15. This is closely linked to its occupiers.
How easily damaged items will be relocated, and the expected time taken to re-establish normal use following an event	The impact of flooding can be long lasting well after the event has taken place affecting both the property which has been flooded and the lives that have been disrupted. The resilience of the community to get back to normal will be important including time taken to repair / replace damages.

Table 8-1: Flood warning and evacuation plans

8.2.2 NRW Flood Warning Areas

NRW monitor river levels within the main rivers affecting the County and based upon weather predictions provided by The Met Office, making an assessment of the anticipated maximum water level that is likely to be reached within the proceeding hours (and/or days). Where these predicted water levels are expected to result in inundation of a populated area, the NRW will issue a series of flood warnings within defined Flood Warning Areas (FWA), encouraging residents to take action to avoid damage to property in the first instance.

There are 15 NRW FWAs in operation across the County. These are located along the River Dee and River Alyn and can be seen on the SFCA Maps in Appendix A.

Live information on flood warnings and flood alerts is available via:

https://naturalresources.wales/flooding/check-flood-warnings/?lang=en

8.3 Flood awareness

Emergency planners may also use the outputs from this SFCA to raise awareness within local communities. This should include raising awareness of flood risks, roles and responsibilities and measures that people can take to make their homes and businesses more resilient to flooding from all sources whilst also encouraging all those at fluvial flood risk to sign up to the NRW's Floodline service via the link above.

It is also recommended that Category 1 responders are provided with appropriate flood response training to help prepare them for the possibility of a major flood with an increased number of people living within flood risk areas, to ensure that adequate preplanning, response and recovery arrangements are in place.

9 Conclusions and Recommendations

9.1 Conclusions

This SFCA update to inform the next stage of the Council's LDF provides a single repository planning tool relating to flood risk and development in Flintshire. Key flood risk stakeholders, namely NRW, DCWW and FCC LLFA were consulted to collate all available and relevant flood risk information on all sources into one comprehensive assessment. Together with this report, this SFCA also provides a suite of interactive GeoPDF flood risk maps (Appendix A) and Development Site Assessment spreadsheet (Appendix B and C).

The flood risk information, assessment, guidance and recommendations of the SFCA will provide strategic planners with the evidence base required to develop a spatial strategy for the new LDP and apply the justification and acceptability tests of TAN 15 to help assess what type and scale of development should be located, where and demonstrate a risk based approach has been applied.

This SFCA should provide the necessary links between spatial development, wider flood risk management policies, local strategies / plans and on the ground works by combining all available flood risk information together into one single repository for both the LPA and LLFA. This is a strategic study, based on all detailed local information available at the time. Not all flood risks and combinations of risks are accounted for, and there could be a further, more detailed assessment of specific areas or sites, where required.

9.2 Recommendations for further work

The SFCA can be developed into a useful planning tool and evidence base to inform decision making for the LDP. Sitting alongside the LFRMS, PFRA, CFMPs and SMP2, it can be used to provide a much broad assessment tool for integrated, strategic and local flood risk management and delivery.

There are a number of plans and assessments listed in **Error! Reference source not found.** that would be of benefit to FCC in developing its flood risk evidence base to support the delivery of the Local Plan or to help fill critical gaps in flood risk information.

Туре	Study	Reason	Timeframe
Understanding of local flood risk	Additional SFCA work/site- specific FCAs	For those Strategic Recommendation A sites that the LPA considers important to allocate in the LDF.	Short term
	SWMP / drainage strategy	FCC has not developed a SWMP for Flintshire, nor for any areas or communities within Flintshire. It is recommended that the LLFA uses information from this SFCA to ascertain whether certain locations at high surface water flood risk may benefit from a SWMP such as Mold, Mancot, Flint and Shotton.	Short to Medium term
	Coastal Defences	One of the coastal defences at Walwen and Whelston; a number of defences along the Dee estuary; and several of the River Alyn defences are recorded to be in poor condition and should therefore be further investigated with a few to carrying out remedial works or asset replacement.	Short to Medium term

Туре	Study	Reason	Timeframe
Data Collection	Flood Incident Data	FCC has a duty to investigate and record details of significant flood events within their area. General data collected for each incident, should include date, location, weather, flood source (if apparent without an investigation), impacts (properties flooded or number of people affected) and response by any RMA.	Short Term
	Asset Register	FCC should formulate, update and maintain a register of structures and features, which are considered to have an effect on flood risk. The requirement for this is noted in the LFRMS	Short term / ongoing
Risk Assessment	Asset Register Risk Assessment	FCC should carry out a strategic flood risk assessment of structures and features on the Asset Register to inform capital programme and prioritise maintenance programme.	Short term / ongoing
Designating Authorities	Designation of Assets	FCC have permissive powers to designate assets which are considered to affect flood risk and are not owned by the LLFA or NRW	Short term / ongoing
Partnership Welsh Water, Dee Valley Water Natural Resources Wales Joint Emergency Planning Unit	Water, Dee Valley	FCC should continue to work with the water companies on sewer and surface water projects.	Ongoing
	Resources	FCC should continue to work with NRW on fluvial and tidal flood risk management projects. FCC should also identify potential opportunities for joint schemes to tackle flooding from all sources.	Ongoing
	Emergency Planning	FCC should continue to work with the members of the NWRF to ensure appropriate preparedness to enable multi-agency response to flooding.	Ongoing

Table 9-1: Recommended further work for FCC

Offices at

Coleshill
Doncaster
Dublin
Edinburgh
Exeter
Glasgow
Haywards Heath
Isle of Man
Limerick
Newcastle upon Tyne
Newport
Peterborough
Saltaire
Skipton
Tadcaster
Thirsk
Wallingford
Warrington

Registered Office 1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD United Kingdom

+44(0)1756 799919 info@jbaconsulting.com www.jbaconsulting.com Follow us:

Jeremy Benn Associates Limited

Registered in England 3246693

JBA Group Ltd is certified to: ISO 9001:2015 ISO 14001:2015 ISO 45001:2018 ISO 27001:2013